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Appendix S1: Derivations and additional results 

P input derivation 

 To a first approximation, uplift and erosion act to replenish weatherable P in the 

ecosystem independently of the quantity of weatherable P, and weatherable P becomes an input 

to the ecosystem based on the weathering rate.  If W is weatherable P, u is the uplift/erosion flux, 

and ψ is the weathering rate, the change in weatherable P over time is  

 Wu
dt

dW ψ−=  

 Thus, the equilibrium amount of weatherable P and the amount of weatherable P at any 

time t are given by 

 
ψ
uW =  

 ( ) ( )( ) teWWWtW ψ−−+= 0  

 The P weathering input into the ecosystem is given by ψW(t), so the total P input is given 

by dust (d, assumed to independent of ecosystem age) and weathering inputs: 

 ( ) ( )tWdtIP ψ+=  

 ( ) ( )( ) t
P euWudtI ψψ −−++= 0  

Therefore, the constant input is composed of dust inputs and the uplift/erosion flux: α = d + u, 

and the initial time-dependent flux is given by γ = (ψW(0) – u). 

 

Why the timescale approximation for non-limiting nutrients deviates from the full integration 

 At the long timescale, when NPP switches from being N limited to P limited, the 

approximated SOM N decreases faster than in the full numerical integration (Fig. 2E) and the 

approximated plant-available N (red line) does not increase as rapidly as in the full numerical 



integration (blue dashed line; Fig. 2G).  In the approximation SOM N dives to a quasi-

equilibrium within the long timescale at a faster rate (approximately mN, which is 1/33 per year) 

than the rest of the long timescale dynamics ((mP(1-κδP) + φP) ≈ 1/1000 per year and ψ ≈ 1/4000 

per year).  Plant-available N on this timescale depends on the balance of N mineralization and 

plant uptake, and because SOM N (and thus N mineralization) decreases faster than plant 

biomass, the approximation is off from the full simulation for some time after the switch to P 

limitation.   

 At the intermediate timescale, which is N limited for this simulation, the approximated 

SOM P does not change, but it does in the full numerical integration (Fig. 2F).  This leads to 

more plant-available P in the approximation (Fig. 2H) because the P mineralization flux is larger 

than in the full integration, when SOM P declines in the intermediate timescale. 

 

Short timescale results 

 Litter N and P quasi equilibria and transient dynamics are independent of whether N or P 

is limiting, whereas plant-available N and P results depend on which nutrient limits NPP.  

Setting equation 2 to zero,  
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where the hat above a variable indicates a quasi equilibrium value.  Biologically, the quasi 

equilibrium for each nutrient is the N or P flux entering the litter pools via plant turnover 

multiplied by the mean litter N or P residence time (see below). 

Integrating equation 2 yields the transient dynamics of litter N and P:  
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iiii

iieLLLtL +−−+= δˆ0ˆ         (S2) 



where Li(t) is the value of variable Li at time t following a perturbation and Li(0) is its state 

immediately after the perturbation.  Because the exponential terms are always negative (i.e., the 

δs and hs are all positive), equation S2 begins at Li(0) (which may be above or below their quasi 

equilibria) and approaches the quasi equilibrium value given in equation S1 in a saturating 

manner (Fig. S1A).  The rate at which litter N or P approaches its quasi equilibrium is given by 

the exponential term in equation S2, δi + hi.  Except in systems where ground fires or other litter 

loss mechanisms are very common, we expect litter decomposition to be much faster than litter 

loss from the ecosystem (δi >> hi), so the litter timescale for each nutrient i is approximately 

1/δi, the inverse of the litter decomposition rate for that nutrient.  

 Available N and P dynamics depend on whether N or P limits NPP, so we present results 

for both, beginning with N limitation.  From equations 4-6, the quasi equilibria for plant-

available N and P when N limits NPP (with N limitation denoted by the subscript “,N” following 

the variable name) are 
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where, as above, ÂP,N indicates the quasi-equilibrium for AP if plants were N limited, and B, Di, 

and IP are treated as constants rather than variables. 

Integrating equations 4 and 5 using the N limited part of equation 6 yields the following 

expression for the transient dynamics of AN and AP: 
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Like the transient dynamics for litter N and P, available N and P begin at AN(0) and AP(0) and 

approach ÂN,N and ÂP,N because all the exponential terms are negative.  However, unlike  

litter N and P there are not single controlling rates for available N and P.  Available N has two 

controlling rates, BνN + kN and δN + hN.  Plant uptake is likely to be much faster than available N 

loss (BνN >> kN), so the controlling rates are approximately BνN and δN.  If these two are 

approximately equal, available N goes from AN(0) to ÂN,N with a single saturation rate, BνN + δN, 

although it can have one overshoot before saturating (see below).  However, it is more likely that 

the plant uptake rate far exceeds the litter decomposition rate (BνN >> δN), in which case AN has 

two controlling rates within our short timescale.  It begins at AN(0) and approaches ÂN,N + CNs1 

(where CNs1 is the first constant for the N limited solutions to the short timescale) at the plant 

uptake rate (BνN), then after quasi equilibrating at ÂN,N + CNs1 it proceeds to ÂN,N at the litter N 

decomposition rate (δN).  The sign of CNs1 depends on whether litter N begins above or below its 

quasi equilibrium.  Assuming the plant N uptake rate exceeds the litter decomposition rate, CNs1 

is positive if litter N begins above its quasi equilibrium and negative otherwise.  For example, if 



a perturbation removes litter but increases available N (e.g., a ground fire that combusts some 

litter N but also mineralizes some), CNs1 is negative, so AN drops from its initial large value AN(0) 

(which has been fertilized from the instant mineralization) to a low value, ÂN,N + CNs1 (a quasi 

equilibrium in which plants have taken up the excess mineralized N but the litter N pool has not 

yet recovered), then returns to ÂN,N when litter returns to its quasi equilibrium (lower line in Fig. 

S1B, upper line in Fig. S1A).  If instead the perturbation increases both available N and litter N 

(e.g., a combined litter addition and fertilization manipulation), there will still be two apparent 

saturations, but no oscillation (upper line in Fig. S1B, lower line in Fig. S1A). 

 Under the N limited scenario, available P has up to four controlling rates: the two it 

shares with available N as well as the litter P decomposition rate (δP + hP ≈ δP) and the available 

P loss rate (kP).  It follows the same course of multiple saturations as AN, and thus can overshoot 

or approach the quasi equilibrium monotonically depending on whether the perturbation 

increases AN, LN, and LP relative to their quasi equilibria (these determine the signs of CNs1, CNs2, 

CNs3, and CNs4).  For example, a ground fire will mineralize but not combust litter P, decreasing 

LN and LP but increasing AN and especially AP relative to their quasi equilibria.  The litter P 

decomposition rate is likely to be similar to the litter N decomposition rate, but the available P 

loss rate (kP) might be larger or smaller.  Many dynamics are possible here depending on various 

parameters, but as noted in the main text, the timescale approximations for the non-limiting 

nutrient (unlike the limiting nutrient) are not extremely accurate representations of the full 

system. 

 If P limits NPP at the short timescale, there are different expressions for the quasi 

equilibria and transient dynamics of AN and AP: 
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Mathematically, the results when P limits NPP are similar to those for N limitation.  Available P 

(the limiting nutrient) has two potential controlling rates, the plant P uptake rate (BνP + kP ≈ BνP) 

and the litter P decomposition rate (δP + hP ≈ δP), and available N (the non-limiting nutrient) has 

those two as well as potentially two more, the litter N decomposition rate (δN + hN ≈ δN) and the 

available N loss rate (kN). 

 Limitation can switch from N to P or P to N on the short timescale.  Immediately 

following a perturbation, limitation depends on which part of the minimum function in equation 

6 is less when evaluated at AN(0), AP(0).  For example, immediately following the application of 

N fertilizer NPP might be P limited, but if the short timescale quasi equilibrium is N limited then 

limitation would transition from P to N during the short timescale.  In this case the transient 



dynamics of available N and P exhibit kinks at the limitation switch on the short timescale.  

Limitation can switch during any of the saturations, but expressions describing this transition 

time are cumbersome and our focus is elsewhere so we omit them here. 

 In our simulation for Fig. 2, N is limiting at the end of the short timescale and plant 

available N begins farther from its quasi equilibrium than litter N or P do.  Therefore, the time at 

which the short timescale transitions to the intermediate timescale, ts→m, is given by the time at 

which plant available N reaches 1% of its quasi equilibrium value.  Assuming that BνN + kN >> 

δN + hN (approximately, plant uptake is faster than litter decomposition), this is given by 
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Intermediate timescale results 

 The transient litter dynamics at the intermediate timescale are given by 
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where the intermediate timescale quasi equilibria expressions for litter N and P (with double 

hats) are the same as in the short timescale (equation S1) except that plant biomass is evaluated 

at its quasi equilibrium.  For both litter N and P the single timescale is the N-limited plant 

biomass timescale, so they would have the same shape as plant biomass in Fig. 3A.  As with 

equation 11, if μ’N is negative plant biomass and litter N and P increase exponentially, whereas if 

it is positive they increase in a saturating manner like litter N and P on the short timescale. 

 The quasi equilibria and transient dynamics for available N and P are 
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where θ = θµ + θg. 

 The plant biomass quasi equilibrium and transient dynamics when N limits NPP (also 

given in the main text) are 
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 When P limits NPP, the expressions are as above but with the subscripts N and P 

reversed, except for available N: 
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  The transition time from N to P limitation, if it occurs, is given by  
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Alternatively, if limitation switches from P to N during the intermediate timescale, the 

transition time is given by  
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 The intermediate timescale transitions to the long timescale at the time when plant 

biomass reaches 1% of its quasi equilibrium, which is given by 
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Long timescale results 

The N limited equilibrium expressions are 
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 If P limits NPP on the long timescale, the equilibrium expressions are the same as for N 

limitation except the subscript N’s and P’s are reversed, IN is the constant P input flux α, and 

terms with ωNF or F on its own (but not θF or θµF) are 0.   

The N limited transient dynamics are 
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 In addition to sharing a controlling rate with SOM N, SOM P has another that is likely to 

be much faster, mP + φP, which is approximately equal to mP, the net mineralization rate of P in 

SOM.  Plant-available P shares these two timescales, and also has a third controlling rate, ψ, the 

rock weathering rate.  The rock weathering rate is likely to be substantially slower than φN.  

However, as noted above and on Fig. 2, these other timescales for the non-limiting nutrient do 

not play a significant role in the full system. 



 From the transient dynamics it is clear that the long timescale is globally stable if all the 

exponents are negative, which is true when  
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This is equivalent to the condition for stability for models of this general type [28]: losses of 

plant-unavailable N exceed N fixation inputs ( NNNNNN DLhFB ,φ+< ), as proven here.  Plugging 

equation S3 into condition S4 and rearranging yields 
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Multiplying through by δN + hN, collecting terms, and canceling yield 
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When P limits NPP on the long timescale, the transient dynamics are 
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In addition to sharing the two controlling rates with SOM P, SOM N and plant-available N have 

a third, faster rate, mN + φN ≈ mN, the net N mineralization rate from SOM.  As noted above, this 

faster rate is not noticeable in the full numerical integration.  Plant-available P is constant on this 

long timescale. 

 The transition from N to P limitation at the long timescale occurs at the time tN→P,l given 

by 
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This equation cannot be solved explicitly because there are three distinct timescales involved.  

However, if the rates of DON loss ( Nφ ) and rock weathering (ψ) are sufficiently different, the 

exact time can be solved, as shown for the rock weathering transition time in the main text. 

 


