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Appendix S1: Derivations and additional results
P input derivation
To a first approximation, uplift and erosion act to replenish weatherable P in the
ecosystem independently of the quantity of weatherable P, and weatherable P becomes an input
to the ecosystem based on the weathering rate. If W is weatherable P, u is the uplift/erosion flux,

and y is the weathering rate, the change in weatherable P over time is

Thus, the equilibrium amount of weatherable P and the amount of weatherable P at any
time t are given by

w=4
v

W(t)=W +{w(0)-W "
The P weathering input into the ecosystem is given by w(t), so the total P input is given

by dust (d, assumed to independent of ecosystem age) and weathering inputs:
lp(t)=d +yW (1)
lo(t)=d +u+ (W (0)-ue™
Therefore, the constant input is composed of dust inputs and the uplift/erosion flux: o = d + u,

and the initial time-dependent flux is given by y = (w#(0) — u).

Why the timescale approximation for non-limiting nutrients deviates from the full integration
At the long timescale, when NPP switches from being N limited to P limited, the
approximated SOM N decreases faster than in the full numerical integration (Fig. 2E) and the

approximated plant-available N (red line) does not increase as rapidly as in the full numerical



integration (blue dashed line; Fig. 2G). In the approximation SOM N dives to a quasi-
equilibrium within the long timescale at a faster rate (approximately my, which is 1/33 per year)
than the rest of the long timescale dynamics ((mp(1-xsp) + @p) = 1/1000 per year and w = 1/4000
per year). Plant-available N on this timescale depends on the balance of N mineralization and
plant uptake, and because SOM N (and thus N mineralization) decreases faster than plant
biomass, the approximation is off from the full simulation for some time after the switch to P
limitation.

At the intermediate timescale, which is N limited for this simulation, the approximated
SOM P does not change, but it does in the full numerical integration (Fig. 2F). This leads to
more plant-available P in the approximation (Fig. 2H) because the P mineralization flux is larger

than in the full integration, when SOM P declines in the intermediate timescale.

Short timescale results

Litter N and P quasi equilibria and transient dynamics are independent of whether N or P
is limiting, whereas plant-available N and P results depend on which nutrient limits NPP.
Setting equation 2 to zero,

(u+6,F)B

L=
I a’i(5i +hi)

(S1)

where the hat above a variable indicates a quasi equilibrium value. Biologically, the quasi
equilibrium for each nutrient is the N or P flux entering the litter pools via plant turnover
multiplied by the mean litter N or P residence time (see below).

Integrating equation 2 yields the transient dynamics of litter N and P:

L(®)=C +(L0)- L (S2)



where L;(t) is the value of variable L; at time t following a perturbation and L;(0) is its state
immediately after the perturbation. Because the exponential terms are always negative (i.e., the
os and hs are all positive), equation S2 begins at Lj(0) (which may be above or below their quasi
equilibria) and approaches the quasi equilibrium value given in equation S1 in a saturating
manner (Fig. S1A). The rate at which litter N or P approaches its quasi equilibrium is given by
the exponential term in equation S2, §; + h;. Except in systems where ground fires or other litter
loss mechanisms are very common, we expect litter decomposition to be much faster than litter
loss from the ecosystem (6; >> h;), so the litter timescale for each nutrient i is approximately
1/6;, the inverse of the litter decomposition rate for that nutrient.

Available N and P dynamics depend on whether N or P limits NPP, so we present results
for both, beginning with N limitation. From equations 4-6, the quasi equilibria for plant-
available N and P when N limits NPP (with N limitation denoted by the subscript “,N” following
the variable name) are
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where, as above, Ap \ indicates the quasi-equilibrium for Ap if plants were N limited, and B, D;,
and Ip are treated as constants rather than variables.
Integrating equations 4 and 5 using the N limited part of equation 6 yields the following

expression for the transient dynamics of Ay and Ap:
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Like the transient dynamics for litter N and P, available N and P begin at Ax(0) and Ap(0) and
approach Ay and Ap y because all the exponential terms are negative. However, unlike
litter N and P there are not single controlling rates for available N and P. Available N has two
controlling rates, Bvy + ky and dy + hy. Plant uptake is likely to be much faster than available N
loss (Bvy >> ky), so the controlling rates are approximately Bvy and dy. If these two are
approximately equal, available N goes from Ay(0) to Ay n With a single saturation rate, Bvy + dy,
although it can have one overshoot before saturating (see below). However, it is more likely that
the plant uptake rate far exceeds the litter decomposition rate (Bvy >> dy), in which case Ay has
two controlling rates within our short timescale. It begins at Ay(0) and approaches Ay n + Cnst
(where Cyg is the first constant for the N limited solutions to the short timescale) at the plant
uptake rate (Bvy), then after quasi equilibrating at Ay n + Cns: it proceeds to Ay y at the litter N
decomposition rate (dn). The sign of Cysi depends on whether litter N begins above or below its

quasi equilibrium. Assuming the plant N uptake rate exceeds the litter decomposition rate, Cns;

is positive if litter N begins above its quasi equilibrium and negative otherwise. For example, if



a perturbation removes litter but increases available N (e.g., a ground fire that combusts some
litter N but also mineralizes some), Cns1 IS negative, so Ay drops from its initial large value Ay(0)
(which has been fertilized from the instant mineralization) to a low value, Ay + Cys1 (@ quasi
equilibrium in which plants have taken up the excess mineralized N but the litter N pool has not
yet recovered), then returns to Ay when litter returns to its quasi equilibrium (lower line in Fig.
S1B, upper line in Fig. S1A). If instead the perturbation increases both available N and litter N
(e.g., acombined litter addition and fertilization manipulation), there will still be two apparent
saturations, but no oscillation (upper line in Fig. S1B, lower line in Fig. S1A).

Under the N limited scenario, available P has up to four controlling rates: the two it
shares with available N as well as the litter P decomposition rate (dp + hp = dp) and the available
P loss rate (kp). It follows the same course of multiple saturations as Ay, and thus can overshoot
or approach the quasi equilibrium monotonically depending on whether the perturbation
increases Ay, Ln, and Lp relative to their quasi equilibria (these determine the signs of Cys1, Cnsz,
Cnss3, and Cnss). For example, a ground fire will mineralize but not combust litter P, decreasing
Ly and Lp but increasing Ay and especially Ap relative to their quasi equilibria. The litter P
decomposition rate is likely to be similar to the litter N decomposition rate, but the available P
loss rate (kp) might be larger or smaller. Many dynamics are possible here depending on various
parameters, but as noted in the main text, the timescale approximations for the non-limiting
nutrient (unlike the limiting nutrient) are not extremely accurate representations of the full
system.

If P limits NPP at the short timescale, there are different expressions for the quasi

equilibria and transient dynamics of Ay and Ap:
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Mathematically, the results when P limits NPP are similar to those for N limitation. Available P
(the limiting nutrient) has two potential controlling rates, the plant P uptake rate (Bve + kp = Bvp)
and the litter P decomposition rate (dp + hp = dp), and available N (the non-limiting nutrient) has
those two as well as potentially two more, the litter N decomposition rate (dy + hy = dn) and the
available N loss rate (ky).

Limitation can switch from N to P or P to N on the short timescale. Immediately
following a perturbation, limitation depends on which part of the minimum function in equation
6 is less when evaluated at Ay(0), Ap(0). For example, immediately following the application of
N fertilizer NPP might be P limited, but if the short timescale quasi equilibrium is N limited then

limitation would transition from P to N during the short timescale. In this case the transient



dynamics of available N and P exhibit kinks at the limitation switch on the short timescale.
Limitation can switch during any of the saturations, but expressions describing this transition
time are cumbersome and our focus is elsewhere so we omit them here.

In our simulation for Fig. 2, N is limiting at the end of the short timescale and plant
available N begins farther from its quasi equilibrium than litter N or P do. Therefore, the time at
which the short timescale transitions to the intermediate timescale, ts_.,,, is given by the time at
which plant available N reaches 1% of its quasi equilibrium value. Assuming that Bvy + ky >>

on + hy (approximately, plant uptake is faster than litter decomposition), this is given by

_ 0.01A,
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Intermediate timescale results

The transient litter dynamics at the intermediate timescale are given by

LB, @)=L {ELN(B%_(O)%DN’M,

N

where the intermediate timescale quasi equilibria expressions for litter N and P (with double
hats) are the same as in the short timescale (equation S1) except that plant biomass is evaluated
at its quasi equilibrium. For both litter N and P the single timescale is the N-limited plant
biomass timescale, so they would have the same shape as plant biomass in Fig. 3A. As with
equation 11, if 4’y is negative plant biomass and litter N and P increase exponentially, whereas if
it is positive they increase in a saturating manner like litter N and P on the short timescale.

The quasi equilibria and transient dynamics for available N and P are
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where 6 = 6, + 6.

The plant biomass quasi equilibrium and transient dynamics when N limits NPP (also

given in the main text) are
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When P limits NPP, the expressions are as above but with the subscripts N and P

reversed, except for available N:
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The transition time from N to P limitation, if it occurs, is given by
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Alternatively, if limitation switches from P to N during the intermediate timescale, the

transition time is given by
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The intermediate timescale transitions to the long timescale at the time when plant

biomass reaches 1% of its quasi equilibrium, which is given by



Long timescale results

The N limited equilibrium expressions are
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If P limits NPP on the long timescale, the equilibrium expressions are the same as for N
limitation except the subscript N’s and P’s are reversed, Iy is the constant P input flux «, and
terms with wnF or F on its own (but not 6F or 6,F) are 0.

The N limited transient dynamics are

Dy (1)= By + (D (0)- Dy Jo ™5
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In addition to sharing a controlling rate with SOM N, SOM P has another that is likely to
be much faster, mp + @p, Which is approximately equal to mp, the net mineralization rate of P in
SOM. Plant-available P shares these two timescales, and also has a third controlling rate, v, the
rock weathering rate. The rock weathering rate is likely to be substantially slower than g.
However, as noted above and on Fig. 2, these other timescales for the non-limiting nutrient do

not play a significant role in the full system.



From the transient dynamics it is clear that the long timescale is globally stable if all the

exponents are negative, which is true when

m([L-x; )+¢, >0. (S4)
This is equivalent to the condition for stability for models of this general type [28]: losses of
plant-unavailable N exceed N fixation inputs (B F < h, L, + ¢, 5N’N ), as proven here. Plugging

equation S3 into condition S4 and rearranging yields
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Multiplying through by dy + hy, collecting terms, and canceling yield
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Dividing both sides by the right hand side and multiplying by B, F gives
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When P limits NPP on the long timescale, the transient dynamics are
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In addition to sharing the two controlling rates with SOM P, SOM N and plant-available N have

a third, faster rate, my + ¢n = my, the net N mineralization rate from SOM. As noted above, this

faster rate is not noticeable in the full numerical integration. Plant-available P is constant on this

long timescale.

The transition from N to P limitation at the long timescale occurs at the time ty_.p; given
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This equation cannot be solved explicitly because there are three distinct timescales involved.

However, if the rates of DON loss (¢, ) and rock weathering (i) are sufficiently different, the

exact time can be solved, as shown for the rock weathering transition time in the main text.



