Mathematical models of immunological tolerance and immune activation following prenatal infection with hepatitis B virus Supplementary Materials

Model analysis of one-virus model

$$\frac{dV_p}{dt} = r_p V_p \left(1 - \frac{V_p}{K}\right) - \mu_p V_p T_p, \tag{1}$$

$$\frac{de}{dt} = \pi V_p - \delta e, \tag{2}$$

$$\frac{dT_p}{dt} = \frac{\alpha_p V_p T_p}{1 + \sigma e} - dT_p.$$
(3)

Proposition 1. Each component of the solution of system (1-3), subject to $0 \le V_p(0) \le K$, $e(0) \ge 0$, $T_p(0) \ge 0$ remains bounded and non-negative for all t > 0.

Proof. Because the system (1-3) is locally Lipschitz at t = 0, its solution exists on the interval [0, b) for some number b > 0.

Suppose that there exists $t_1 \in (0, b)$ such that $e(t_1) = 0$, and $V_p(t) > 0$, e(t) > 0, $T_p(t) > 0$ for $0 < t < t_1$. For all $t \in [0, t_1]$ we have

$$\frac{de}{dt} = \pi V_p - \delta e \ge -\delta e.$$

The exponential solution is a lower bound of e(t), and $e(t_1) \ge e(0)e^{-\delta t_1} > 0$, which contradicts the $e(t_1) = 0$ assumption.

Similarly, assume there exists $t_1 \in (0, b)$ such that $T_p(t_1) = 0$, and $V_p(t) > 0$, e(t) > 0, $T_p(t) > 0$ for $0 < t < t_1$. For all $t \in [0, t_1]$ we have

$$\frac{dT_p}{dt} = \frac{\alpha_p V_p T_p}{1 + \sigma e} - dT_p \ge -dT_p.$$

The exponential solution is a lower bound of $T_p(t)$, and $T_p(t_1) \ge T_p(0)e^{-dt_1} > 0$, which contradicts the $T_p(t_1) = 0$ assumption.

Finally, assume there exists $t_1 \in (0, b)$ such that $V_p(t_1) = 0$, and $V_p(t) > 0$, e(t) > 0, $T_p(t) > 0$ for $0 < t < t_1$. For all $t \in [0, t_1]$ we have

$$\frac{dV_p}{dt} = r_p V_p \left(1 - \frac{V_p}{K}\right) - \mu_p T_p V_p \ge -\mu_p T_p V_p.$$

Then $V_p(t_1) \ge V_p(0)e^{-\mu \int_0^{t_1} T_p(t)dt} > 0$, which contradicts the $V_p(t_1) = 0$ assumption.

We can now verify that the solutions are bounded. Since

$$\frac{dV_p}{dt} = r_p V_p \left(1 - \frac{V_p}{K} \right) - \mu_p T_p V_p \le r_p V_p \left(1 - \frac{V_p}{K} \right),$$

we have that V_p is bounded above by a solution to the logistic equation, with initial condition $V_p(0) \leq K$. We conclude that $V_p(t) \leq K$ for all $t \in [0, b)$. Since $V_p(t) \leq K$,

$$\frac{de}{dt} = \pi V_p - \delta e \le \pi K - \delta e$$

and $e(t) \leq \frac{K\pi}{\delta} + \left(e(0) - \frac{K\pi}{\delta}\right)e^{-\delta t} \leq \max\{e(0), \frac{K\pi}{\delta}\}$ for $t \geq 0$.

Finally, let $z = \alpha_p V_p + \mu_p T_p$. For $V_p(t) \le K$ and $e(t) \ge 0$, $\frac{dz}{dt} = \frac{\alpha_p \mu_p V_p T_p}{1 + \sigma e} - \alpha_p \mu_p V_p T_p + r_p \alpha_p V_p \left(1 - \frac{V_p}{K}\right) - d\mu_p T_p \le (r_p + d)\alpha_p K - dz.$

Therefore $z(t) \leq \frac{(r_p+d)\alpha_p}{d}K + \left(z(0) - \frac{(r_p+d)\alpha_p}{d}K\right)e^{-dt} \leq \max\{z(0), \frac{(r_p+d)\alpha_p}{d}K\}$. Since $V_p(t)$ and z(t) are bounded it follows that $T_p(t)$ is bounded on [0, b).

System (1-3) together with initial conditions $0 \leq V_p(0) \leq K$, $e(0) \geq 0$, $T_p(0) \geq 0$ has positive and bounded solutions for all $t \in [0, b)$. This implies that $b = \infty$.

System (1-3) has three steady states: a biologically irrelevant steady state, $S_0 = (0, 0, 0)$, a state representing immune tolerance, $S_T = (\tilde{V}_p, \tilde{e}, \tilde{T}_p) = (K, \frac{K\pi}{\delta}, 0)$, and a state representing immune activation, $S_L = (\bar{V}_p, \bar{e}, \bar{T}_p) = \left(\Omega, \frac{\pi\Omega}{\delta}, \frac{r_p}{\mu_p} \left(1 - \frac{\Omega}{K}\right)\right)$; where $\Omega = \frac{d\delta}{\alpha_p \delta - d\sigma \pi}$.

Proposition 2. (1-3) exhibits the following dynamics.

- 1. S_0 is always unstable.
- 2. If $\Omega < 0$ or $\Omega > K$ then S_T is asymptotically stable and S_L does not exist.
- 3. If $0 < \Omega < K$ then S_T is unstable and S_L exists and is asymptotically stable.

Proof. 1. and 2. The stability of S_0 and S_T follow from standard linearization techniques. 3. The proof of the stability of S_L is as follows.

$$J(\bar{V}_p, \bar{e}, \bar{T}_p)|_{S_L} = \begin{pmatrix} -\frac{r_p \bar{V}_p}{K} & 0 & -\mu_p \bar{V}_p \\ \pi & -\delta & 0 \\ \frac{\alpha_p \bar{T}_p}{1+\sigma \bar{e}} & -\frac{\alpha_p \sigma \bar{T}_p \bar{V}_p}{(1+\sigma \bar{e})^2} & 0 \end{pmatrix}.$$

The eigenvalues of J satisfy

$$\lambda^3 + a_1\lambda^2 + a_2\lambda + a_3 = 0,$$

where

$$a_1 = \delta + \frac{r_p V_p}{K},$$

$$a_2 = \frac{\delta r_p \bar{V}_p}{K} + \frac{\alpha_p \mu_p \bar{T}_p \bar{V}_p}{1 + \sigma \bar{e}},$$

$$a_3 = \frac{\delta \alpha_p \mu_p \bar{T}_p \bar{V}_p}{(1 + \sigma \bar{e})^2}.$$

Clearly $a_1, a_2, a_3 > 0$ when S_L exists. Furthermore,

$$a_{1}a_{2} = \left(\delta + \frac{r_{p}\bar{V}_{p}}{K}\right) \left(\frac{\delta r_{p}\bar{V}_{p}}{K} + \frac{\alpha_{p}\mu_{p}\bar{T}_{p}\bar{V}_{p}}{1 + \sigma\bar{e}}\right)$$

$$> \frac{\delta\alpha_{p}\mu_{p}\bar{T}_{p}\bar{V}_{p}}{1 + \sigma\bar{e}}$$

$$\geq \frac{\delta\alpha_{p}\mu_{p}\bar{T}_{p}\bar{V}_{p}}{(1 + \sigma\bar{e})^{2}} = a_{3}.$$

By Routh-Hurwitz criteria, we determine that S_L is locally asymptotically stable when it exists.

Model analysis of mutation model

$$\frac{dV_p}{dt} = r_p V_p \left((1-\phi) - \frac{V_p + V_n}{K} \right) - \mu_p V_p T_p, \tag{4}$$

$$\frac{dV_n}{dt} = r_p V_n \left(1 - \frac{V_p + V_n}{K} \right) + r_p \phi V_p - \mu_p V_n T_n, \tag{5}$$

$$\frac{de}{dt} = \pi V_p - \delta e, \tag{6}$$

$$\frac{dT_p}{dt} = \frac{\alpha_p V_p T_p}{1 + \sigma e} - dT_p, \tag{7}$$

$$\frac{dT_n}{dt} = \frac{\alpha_n V_n T_n}{1 + \sigma e} - dT_n, \tag{8}$$

The mutation model has several steady states. The first one is biologically irrelevant, $S_0 = (0, 0, 0, 0, 0)$. The tolerance state of (4-8) is depicted by the absence of T-cell induced killing of V_n when V_p is lost completely, $S_{T_n} = (0, K, 0, 0, 0).$

There are four steady-states that represent immune activation. The first one represents immune activation against V_p but not V_n ,

$$S_{L1} = \left(\bar{\vartheta}_1, \bar{\omega}_1, \bar{e}_1, \bar{\tau}_1, \bar{\sigma}_1\right) = \left(\Omega, \bar{\omega}_1, \frac{\pi}{\delta}\Omega, \bar{\tau}_1, 0\right),\,$$

where

$$\frac{1}{K}\bar{\omega}_1^2 + \left(\frac{\Omega}{K} - 1\right)\bar{\omega}_1 - \Omega\phi = 0, \tag{9}$$

and

$$\bar{\tau}_1 = \frac{r_p}{\mu_p} \left(1 - \phi - \frac{\Omega + \bar{\omega}_1}{K} \right). \tag{10}$$

 S_{L1} exists when $0 < \Omega < K$ and $\phi < 1 - \frac{\Omega + \bar{\omega}_1}{K}$.

There are two steady states representing competent T-cell response to V_n but not V_p : one corresponding to small and intermediate percentage of V_p mutations,

$$S_{L2} = \left(\bar{\vartheta}_2, \bar{\omega}_2, \bar{e}_2, \bar{\tau}_2, \bar{\sigma}_2\right) = \left(\left(1 - \phi - \frac{d}{K\alpha_n}\right) \frac{\alpha_n \delta K}{\alpha_n \delta + d\sigma \pi}, (1 - \phi)K - \bar{\vartheta}_2, \frac{\pi}{\delta}\bar{\vartheta}_2, 0, \frac{r_p \phi}{\mu_p} \left(\frac{\bar{\vartheta}_2}{\bar{\omega}_2} + 1\right)\right)$$

which exists when $\phi < 1 - \frac{d}{K\alpha_n}$; and one corresponding to large percentage of mutations leading to complete removal of V_p ,

$$S_{L3} = \left(\bar{\vartheta}_3, \bar{\omega}_3, \bar{e}_3, \bar{\tau}_3, \bar{\sigma}_3\right) = \left(0, \frac{d}{\alpha_n}, 0, 0, \frac{r_p}{\mu_p} \left(1 - \frac{d}{\alpha_n K}\right)\right),$$

which exists when $K > \frac{d}{\alpha_n}$. The last steady state corresponds to T-cells response to both viruses types,

$$S_{L4} = \left(\bar{\vartheta}_4, \bar{\omega}_4, \bar{e}_4, \bar{\tau}_4, \bar{\sigma}_4\right) = \left(\Omega, \frac{\alpha_p}{\alpha_n}\Omega, \frac{\pi}{\delta}\Omega, \bar{\tau}_4, \bar{\sigma}_4\right),$$

where

$$\bar{\tau}_4 = \frac{r_p}{\mu_p} \left(1 - \phi - \frac{\alpha_p + \alpha_n}{\alpha_n} \frac{\Omega}{K} \right), \tag{11}$$

$$\bar{\sigma}_4 = \frac{r_p}{\mu_p} \left(1 + \phi \frac{\alpha_n}{\alpha_p} - \frac{\alpha_p + \alpha_n}{\alpha_n} \frac{\Omega}{K} \right).$$
(12)

(13)

This state exist if $\frac{\alpha_p}{\alpha_n} \left(\frac{\alpha_p + \alpha_n}{\alpha_n} \frac{\Omega}{K} - 1 \right) < \phi < 1 - \frac{\alpha_p + \alpha_n}{\alpha_n} \frac{\Omega}{K}$. Note that the inequality fails for $\Omega > K$. Therefore, S_{L4} doest not exist when $0 > \Omega > K$.

Proposition 3. When $K < d/\alpha_n$ the steady state S_{T_n} is locally asymptotically stable and S_{L2} , S_{L3} do not exist.

Proof. The stability results follow from standard linearization techniques. \Box

Proposition 4. If $\Omega = \frac{d\delta}{\alpha_p \delta - d\pi\sigma} > K$, then S_T is locally asymptotically stable in the system (1-3) and S_{T_n} , S_{L1} and S_{L4} do not exist in the system (4-8).

Proof. This result follows from Proposition 2 and the existence of S_T and S_{L1} .

Proposition 5. If $1 - \frac{\Omega}{K} \left(1 + \frac{\alpha_p}{\alpha_n} \right) < \phi < 1 - \frac{d}{K\alpha_n}$, S_{L2} is locally asymptotically stable.

Proof. The Jacobian for S_{L2} is

$$J_{S_{L2}} = \begin{bmatrix} -r_p \frac{\vartheta_2}{K} & -r_p \frac{\vartheta_2}{K} & 0 & -\mu_p \bar{\vartheta}_2 & 0\\ r_p \phi - r_p \frac{\bar{\omega}_2}{K} & -r_p \phi \frac{\bar{\vartheta}_2}{\bar{\omega}_2} - r_p \frac{\bar{\omega}_2}{K} & 0 & 0 & -\mu_p \bar{\omega}_2\\ \pi & 0 & -\delta & 0 & 0\\ 0 & 0 & 0 & \frac{\alpha_p \bar{\vartheta}_2}{1 + \sigma \bar{\epsilon}_2} - d & 0\\ 0 & \frac{\alpha_n \bar{\sigma}_2}{1 + \sigma \bar{\epsilon}_2} & -\alpha_n \sigma \frac{\bar{\omega}_2 \bar{\sigma}_2}{(1 + \sigma \bar{\epsilon}_2)^2} & 0 & 0 \end{bmatrix}$$

Notice that $\lambda_1 = \frac{\alpha_p \bar{\vartheta}_2}{1 + \sigma \bar{e}_2} - d = \left(\frac{\bar{\vartheta}_2}{\Omega} - 1\right) d$. If $\phi > 1 - \frac{\Omega}{K} \left(1 + \frac{\alpha_p}{\alpha_n}\right)$ then $\lambda_1 < 0$. $\lambda_{2,3,4,5}$ solve the following polynomial.

$$\begin{split} \lambda^4 &+ A\lambda^3 + B\lambda^2 + C\lambda + D = 0, \\ A &= r_p \phi \frac{\bar{\vartheta}_2}{\bar{\omega}_2} + r_p (1 - \phi) + \delta, \\ B &= r_p \delta(1 - \phi) + r_p^2 \phi(1 - \phi) \frac{\bar{\vartheta}_2}{\bar{\omega}_2} + r_p d\phi(1 + \frac{\bar{\vartheta}_2}{\bar{\omega}_2}) + r_p \phi \delta \frac{\bar{\vartheta}_2}{\bar{\omega}_2}, \\ C &= r_p \delta d\phi(1 + \frac{\bar{\vartheta}_2}{\bar{\omega}_2}) + r_p^2 \phi(1 - \phi)(d + \delta) \frac{\bar{\vartheta}_2}{\bar{\omega}_2}, \\ D &= r_p^2 d\phi(\bar{\vartheta}_2 + \bar{\omega}_2) \bar{\vartheta}_2 \frac{\alpha_n \delta + d\sigma \pi}{\alpha_n \bar{\omega}_2 K}. \end{split}$$

Since A > 0, D > 0, AB - C > 0, and $C(AB - C) - A^2D > 0$ by Routh Hurwitz condition we have that the polynomial has solutions with negative real parts. Therefore, when $1 - \frac{\Omega}{K} \left(1 + \frac{\alpha_p}{\alpha_n}\right) < \phi < 1 - \frac{d}{K\alpha_n}$, S_{L2} is locally asymptotically stable.

Proposition 6. If $\phi > 1 - \frac{d}{K\alpha_n}$ and $\frac{d}{\alpha_n} < K$, S_{L3} is locally asymptotically stable.

Proof. The Jacobian for S_{L3} is

$$J_{S_{L3}} = \begin{bmatrix} r_p(1-\phi) - \frac{r_p}{K} \frac{d}{\alpha_n} & 0 & 0 & 0 & 0\\ r_p\phi - \frac{r_p}{K} \frac{d}{\alpha_n} & -\frac{r_p}{K} \frac{d}{\alpha_n} & 0 & 0 & -\mu_p \frac{d}{\alpha_n} \\ \pi & 0 & -\delta & 0 & 0\\ 0 & 0 & 0 & -d & 0\\ 0 & \frac{r_p\alpha_n}{\mu_p} \left(1 - \frac{d}{K\alpha_n}\right) & -\frac{\sigma dr_p}{\mu_p} \left(1 - \frac{d}{K\alpha_n}\right) & 0 & 0 \end{bmatrix}.$$

Notice that $\lambda_1 = r_p(1-\phi) - \frac{r_p}{K} \frac{d}{\alpha_n}$, $\lambda_2 = -\delta$, and $\lambda_3 = -d$. When $\phi > 1 - \frac{d}{K\alpha_n}$ and $\frac{d}{\alpha_n} < K$, $\lambda_1 < 0$. $\lambda_{4,5}$ are the eigenvalues of

$$\begin{pmatrix} -\frac{r_p}{K}\frac{d}{\alpha_n} & -\frac{d\mu_p}{\alpha_n} \\ \frac{r_p\alpha_n}{\mu_p}\left(1-\frac{d}{K\alpha_n}\right) & 0 \end{pmatrix}.$$

Since

$$tr = -\frac{r_p}{K}\frac{d}{\alpha_n} < 0,$$

$$det = r_p d\left(1 - \frac{d}{K\alpha_n}\right) > 0,$$

when $K\alpha_n > d$, the eigenvalues $\lambda_{4,5}$ are always negative.

References