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Nominal cardiac cycle length

The influence of extending diastole to normalize the volunteers’ cardiac cycle length can be shown via the
example of a periodic square pulse wave [1] with pulse duration of 2ϕ and period of ωT, see (1) and Fig. A.
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This periodic square pulse can be rendered comparable to the temporal course of a subject’s cardiac
cycle by taking Tsys (systole) constant and T variable, corresponding to different CCs. An additional
similarity between the real flow curves and the square pulse is the high signal amplitude during Tsys and
the small amplitude during the rest of the period.

Figure A. Periodic square wave with pulse duration of 2ϕ = ωTsys and period length of ωT.

The flow curves are normalized by the average flow rate |f | = 1
T

∫ T
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where a0, a1, . . . , an are the Fourier coefficients. For the periodic square pulse wave f(ωt) (1) with
|f | = hTsys

T , the resulting Fourier coefficients are

a0 =
2hϕ

2π
|f |

−1
=

hTsys

T

T

hTsys
= 1 (6)

a1 =
2h sin(ϕ)

π
|f |

−1
=

2h

π
sin
(πTsys

T

) T

hTsys

=
2T

πTsys
sin
(πTsys

T

)
(7)

a2 =
2h sin(2ϕ)

2π
|f |

−1
=

2h

2π
sin
(2πTsys

T

) T

hTsys

=
T

πTsys
sin
(2πTsys

T

)
(8)

...

an =
2T

nπTsys
sin
(nπTsys

T

)
(9)

The frequency component a0 corresponds to the normalized net flow. In this special case, the non-
normalized net flow is

a′
0 = a0|f | = |f | = f (10)

since for this particular periodic square pulse wave |f(ωt)| = f(ωt). Fig. B depicts the dependence of
the Fourier coefficients’ amplitudes and their frequency spacings with respect to the variable time T.
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Figure B. Fourier coefficients of the normalized square wave (5) with a constant pulse width Tsys depend
on the period length T, as do the spacings Δf of the frequency components.

We show 1) that the frequency components a1 . . . an depend on the period length T (CC) as well as
on the pulse width Tsys (systole); 2) that even if the systoles of two subjects are equal, but the CCs are
not, the amplitudes of the frequency components will be different; and 3) the spacings of the frequency
components depend on T. For these reasons, it is necessary to normalize the heart rates if frequencies are
analyzed as a mean of several subjects.

The extension of the diastolic period has the effect that the amplitudes of the frequency components
are scaled uniformly. This effect would also be observed if the same subject, instead of having his or
her period extended, would be scanned at the corresponding lower heart rate. Additionally, frequency
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patterns’ characteristics reported in [2–4] are comparable to our homogenized and pooled results (Fig.
2 in main article), which indicates that the data were rendered comparable without changing their
characteristics.

Transfer function identification

A parameter estimation method [5] was applied to the input-output data of one CC. The insufficient
frequency content of the signal impeded the use of a nonparametric identification method, e.g. calculating
the TF by dividing each amplitude of the output by the corresponding input frequency component, since
it would result in an unduly noisy function where the magnitude and phase patterns would not be
detectable. A linear fifth-order model was analyzed by the prediction-error identification method (PEM)
which, using a least-squares estimation, identifies the model parameters by minimizing the difference
between model output and measured data. The input-output data was first preprocessed by detrending,
i.e. by the elimination of offsets and drifts. Subsequently, the influence of the input to the output
was characterized without considering the actual data level. Flow measurements of one volunteer were
repeated and the identified models validated with the data of the second scan. The models were simulated
with the input from the respective validation data, while the corresponding outputs ( ŷ) were compared
to the measured data (y).

The fit was calculated according to (11), with y being the mean of the measured output.

fit = 100 ∗
(1 − ‖ŷ − y‖

‖y − y‖

)
(11)

The fit of the identified models for the arterial-to-cervical flow was 80% and for the arterial-to-
aqueductal transmission 95%.

Nonlinear Hammerstein-Wiener and nonlinear ARX models were also tested, validated and compared
to the linear models. The non-linear models gave a poorer fit than the linear ones and most identified
non-linear models became instable during the validation process.
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