
SUPPORTING INFORMATION

Extended Experimental Procedures

Reverse Transcriptase - PCR screening

Total RNAs were extracted from Xenopus laevis ovaries, unfertilized and fertilized eggs (NF1), blastulae (NF8) and early gastrulae (NF10.5) using the RNeasy mini Kit (Qiagen), then reverse transcribed using superscript II reverse transcriptase (Invitrogen). The resulting cDNAs were screened by PCR using degenerate primers (MWG-Biotech). Primer design was based on the strict consensus sequence extracted from the Nanog homeoboxes found in amniotes (forward: 5’-TTYCARNNNCARAARTAYYTNWSNCC-3’ or 5’-TTYGTNNNNCARAARTAYYTNWSNCC-3’), in teleosts (forward: 5’-CNGCNTTYWSNGARWSNCARATG-3’ or 5’- CNGCNTTYWSNGARGARCARATG-3’, reverse: 5’-ACYTGYTTRTANGTNARNCCNG-3’) or in all vertebrates (reverse: 5’-TTYTGRAACCANGTYTTNAC-3’); deoxyinosine was used to reduce degeneracy. PCR reactions (94°C, 2’; 40x[94°C, 30’’; 45-55°C, 1’; 72°C, 30’’]; 72°C, 2’, with hot-start and annealing temperature gradient) were done in presence of ExTaq (Takara) on a MyCycler thermocycler (Biorad). No significant amplification was detected upon gel electrophoresis in presence of SybrSafe DNA Gel Stain fluorescent dye (Invitrogen). Additional PCR conditions did not yield amplification products either (primer concentrations from 0.2 to 1.0 µM, Mg2+ concentrations from 1 to 4 mM, alternate cycling conditions: touch-down, bottom-up). Specific primers for ventx2.1-b (also known as xom) and ventx1.2 (also known as vent-1) were used as positive controls (see Table S2), leading to single band amplificons of the expected size in all experiments. 

Sequences retrieval

We retrieved homeodomain sequences of all referenced NKL factors from Homo sapiens, Gallus gallus, Xenopus tropicalis, Danio rerio, Branchiostoma floridae and Drosophila melanogaster (referenced on the homeoDB2 website 78[]
 (http://homeodb.cbi.pku.edu.cn/)), as well as those from Takifugu rubripes, Anolis carolinensis, Ornithorhynchus anatinus and Monodelphis domestica (referenced on the ncbi, ensembl or Joint Genome Institute websites: http://www.ncbi.nlm.gov/, http://www.ensembl.org/, http://www.jgi.doe.gov/). When a given paralog was unknown in one of these species but present in a closely related one, the relevant sequences were retained (Gasterosteus aculeatus for Danio rerio, Tetraodon nigroviridis for Takifugu rubripes, Taeniopygia guttata for Gallus gallus and Xenopus laevis or Ambystoma mexicanum for Xenopus tropicalis). All these sequences were compiled and aligned using the Seaview software 79[]
. This dataset as well as others used in this study are available upon request to the corresponding authors. 

Phylogenetic analyses

Molecular phylogenetic analyses were performed on the 60 amino acids of the aligned NKL homeodomains using Maximum likelihood (JTT model of amino-acids substitution) as implemented in the PHYML software 80[]
. Branch support was assessed using bootstrap replication (100 replicates). 

Conservation analysis

For each NKL family conserved among vertebrates (Lbx, NK2.1, NK3, Bsx, Emx, Hlx, Barx, Msx, Vax, Hhex, NK5, NK6, En, Dlx, NK1, Tlx, Nk2.2, Dbx, Noto, Ventx and Nanog), the 60 amino acids of the homeodomains of Homo sapiens, Xenopus tropicalis, Danio rerio and Takifugu rubripes representatives were separately aligned. In order to always compare two tetrapod and two teleost sequences, when a given paralog was unknown in one of these species but present in a closely related one, the relevant sequences were retained (e.g. for Nanog, the Ambystoma mexicanum sequence was used instead of Xenopus tropicalis). For each set of orthologs, strict consensus sequences were obtained and the percentage of sequence identity computed using the Seaview software 79[]
. In the case of families represented by multiple paralogs, only the least conserved subfamily was retained to generate Table S1. The number of processed pseudogenes found in the human genome for each NKL family was obtained from the homeoDB2 website 78[]
.
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