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Text S1. Supporting Methods

Discrete dynamics

We either choose f in Equation (1) as the sign function sgn: f(x) = −1 if x < 0, f(x) = 1 if x ≥ 0 or
the Heaviside function H: f(x) = 0 if x < 0, f(x) = 1 if x ≥ 0. si(t) only takes the values −1 (in the
former) or 0 (in the latter) representing the not expressed state, or 1 as the expressed state. This results
in a dynamical system for S(t) on the finite sets {−1, 1}N or {0, 1}N .

Solving the dynamic equations

Since theN -dimensional state vector S(t) is binary, we can represent it by an integer xi ∈ {0, 1, ..., 2N−1},
using binary or gray code [54], for example. The matrix multiplication defined in Equation (1), however,
can only be performed with S(t) in the vector representation. But once normalized by f , we can map
S(t) to the integer representation. To solve Equation (1), we alternate between the two representations.

With S(t) in the integer representation xi, we can rewrite Equation (1) as xi+1 = F (xi). F maps the
finite set {0, 1, ..., 2N −1} into itself deterministically, and starting from any initial value x0, the sequence
of iterated values x0, x1 = F(x0), x2 = F(x1), ..., xi = F(xi−1), ... must eventually use the same value
twice: there must be some i $= j such that xi = xj . Once this happens, the sequence must continue by
repeating the cycle of values from xi to xj−1. The problem of finding the solutions of Equation (1) can
thus be solved by a cycle detection algorithm. We use Brent’s algorithm [55] which returns the orbit’s
period (period of 1 represents a fixed point), the path length to equilibrium (transient time from the
initial state to the attractor) and the final state of the system (or the first state of a cycle). With these
elements in hand the full orbit can also be reconstructed.

Continuous dynamics

Throughout this study we have considered only discrete state spaces. Some authors, however, used
continuously-valued state vectors [9, 16]. This is the case when the state vectors of Equation (1) are
normalized with a sigmoid function. Following [9] we define

ς(x; a) =
2

1 + e−ax
− 1 (3)

where the parameter a controls the steepness of the sigmoid - the larger a the steeper the function (Figure
S13).

Solving the dynamic equations

When using ς(x; a) (Equation (3)), the equilibrium steady state, S(∞), is reached when a measure
analogous to a variance,
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, (4)

is smaller than an error threshold ε & 1, where d(Sa, Sb) =
∑N

i=1(s
a
i − sbi )

2/N defines our distance
metric between two state vectors Sa and Sb, and where S̄(t) is the average of states in the time interval
(t − τ, ..., t). When this convergence criterion is satisfied within T = 100 iterations [9], a fixed point
steady state is found such that S(∞) = S̄(t). Usually τ = 10 and ε = 10−4 [9].
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Full enumeration of state space and stability distributions

For matrices of size N = 4 with binary elements wij ∼ {−1, 1}, it is possible to fully enumerate both the
network and the state spaces. For each network we solve Equation (1) starting from every possible initial

state, and count how many times a fixed point is reached. The stability of a given network i, 1 ≤ i ≤ 2N
2

is given by stability(i) = n(i)
f /n, n = 16. A fixed point could be reached for none of the initial states

(nf = 0, stability = 0), for all initial states (nf = 16, stability = 1), or for some intermediate number.

Network density, connectivity and topology

For comparison with relevant work [8,9], we use c in Figure 3 as a proxy for network connectivity, instead
of K, which is most commonly used in the physics literature [5, 56]. We should note that the networks
in this figure are regular and thus every gene has the same degree K given by K = cN , and that c takes
only discrete values between 0 and 1.

Representing the off-state of a gene

The off state of a gene can either be represented by −1 (most commonly) or by 0 [18,19]. Huerta-Sanchez
& Durrett [12] argue that 0 would be a more realistic choice since an expression state of −1 still has
an effect on the expression of other genes. By comparing the two representations, they found the {0, 1}
mapping to have more fixed points than {−1, 1} for fully connected (c = 1) networks of sizes N = 4, 7, 10.
To generalize their results to different values of c and N , we redo the experiments pictured in Figure 1
and Figure 3 for the {0, 1} map and plot them in Figure 4.

Binary vs. real matrices

So far we have chosen to use either binary {−1, 1} or real N (0, 1) matrices, and we have done so rather
arbitrarily. Although real matrices are the most common choice in the literature, some authors [11, 14]
have chosen to use binary matrices. Computationally, however, the two approaches are quite different,
with the space of binary matrices constituting a finite set, thus allowing its full enumeration for small
networks (N ≤ 5, c = 1). To show that the reported stability measures are, to a good approximation,
independent of this choice, we generated two sets of 376, 992 random matrices each, one sampled from
the class of binary matrices and the other from real numbers, all of network size N = 5. For each matrix
we solve Equation (1) for all 32 initial states and count the number of times it reaches a fixed point. The
resulting stability distributions, analogous to those in Figure 2, are plotted in Figure 5.

Developmental or transient time

The time it takes for Equation (1) to reach an attractor grows with N (Figure S3). Using small networks
of N = 10, previous authors [8,9] have put a limit on the number of iterations, T = 100, of Equation (1),
until it converges according to the criterion defined in Equation (4). If a fixed point has not been reached
after T iterations, the network is said unstable for the given initial state. By using Brent’s algorithm [55]
for discrete dynamics in a highly optimized code, we usually allow the system to iterate until a fixed
point or a cycle has been found (T = ∞). But to be able to produce Figure 1, a limit T (N ;K) < ∞ is
enforced for large or dense networks (Table S2). We use two limits. The first one is based on the longest
convergence time observed for any network of a given size and degree, T (N ;K)max. The second on it’s
average, T (N ;K)mean. The latter is estimated from the regression lines for T = ∞ shown in Figure S3,
and extrapolated to larger N . The same holds for T (N ;K)max. Both are incremented in powers of two,
according to the implementation of Brent’s algorithm [55].


