
Supporting Information for:

Identifying Overlapping and Hierarchical Thematic Structures

in Networks of Scholarly Papers:

A Comparison of Three Approaches

Frank Havemann1,∗ Jochen Gläser2 Michael Heinz1 Alexander Struck1

November 24, 2011

1 Institut für Bibliotheks- und
Informationswissenschaft, Humboldt-Universität
zu Berlin, Berlin, Germany
2 Zentrum Technik und Gesellschaft, Technische
Universität Berlin, Berlin, Germany
∗ E-mail: Frank (dot) Havemann (at)
ibi.hu-berlin.de

Contents

1 Fuzzy Sets 1
1.1 The Characteristic Function 1
1.2 Generalisation of Operations on Sets 2
1.3 Fuzzy Jaccard Index 2
1.4 Fuzzy Cosine Similarity 2
1.5 Fuzzy Precision and Recall 2

2 MONC Algorithm 2
2.1 Pseudo Code 3
2.2 Fitness Function 3
2.3 Resolution Levels 3
2.4 Optimisation 3
2.5 Cliques as Seeds 4

3 Fuzzification Algorithm 4
3.1 Approach 4
3.2 Pseudo Code 4
3.3 Expansion Details 4

1 Fuzzy Sets

The concept of fuzzy sets is used to describe gra-
dations of belonging. It was developed by Zadeh
(1968) and is a generalisation of the classical set
notion. In the case of classical sets we have only
to decide whether an element belongs to a set or
not. An element of a fuzzy set has a membership
grade in the closed interval [0, 1]. We generalise set
operations like intersection or union for fuzzy sets.

1.1 The Characteristic Function

We start with the definition of the characteristic
function of a classical set. Let Ω be the universe of
all possible elements and M be a subset of Ω.

Definition 1 (Characteristic function) The
function MCh from Ω to the two-value set {0, 1},

MCh : Ω→ {0, 1},

where

MCh(x) =

{
1 for x ∈M
0 otherwise

,

is called the characteristic function of M.

A classical set M is uniquely defined by its charac-
teristic function and vice versa. That means, we can
identify sets with their corresponding characteristic
functions.

To define fuzzy sets we generalise the characteris-
tic function to a function M(x), called membership
function, from Ω to the closed interval [0, 1]:

M : Ω→ [0, 1].

1

The membership function M(x) gives us the grade
of membership of x in M.

In the paper we denote node’s i grade of mem-
bership in community C as µi(C).

1.2 Generalisation of
Operations on Sets

Definition 2 (Complement) The complement
of a fuzzy set M is the fuzzy set M with the
membership function

M(x)
.
= 1−M(x),

where M(x) is the membership function of M.

In the case of classical sets this is a true statement,
not a definition, if membership function is replaced
by characteristic function.

We get the membership grade of a node i in the
fuzzy complement of a community C by subtracting
its grade from one: 1− µi(C).

Intersection and union are generalised in the fol-
lowing definitions.

Definition 3 (Fuzzy Intersection) The inter-
section M ∩ N of fuzzy sets M and N is a fuzzy
set with the membership function

M ∩N(x) = min{M(x),N(x)},

where M(x) and N(x) are the membership func-
tions of M and N.

We calculate the node’s i grade of membership in
the intersection of two communities C1 and C2 as
min(µi(C1), µi(C2)).

Definition 4 (Fuzzy Union) The union M ∪N
of fuzzy sets M and N is a fuzzy set with the mem-
bership function

M ∪N(x) = max{M(x),N(x)},

where M(x) and N(x) are the membership func-
tions of M and N.

We calculate the node’s i grade of membership
in the union of two communities C1 and C2 as
max(µi(C1), µi(C2)).

If elements of Ω can be counted we define a fuzzy
set’s size as follows:

Definition 5 (Size of a Fuzzy Set) The size of
a fuzzy set M is

|M| =
∑
x∈Ω

M(x).

The size of a fuzzy community C in a graph with n
nodes is then

|C| =
n∑
i=1

µi(C).

1.3 Fuzzy Jaccard Index

It is defined as the fuzzy analogue of the ordinary
Jaccard index. If M and N are two fuzzy sets we
have to apply the definitions given above to define
it as

simJ(M,N)
.
=
|M ∩N|
|M ∪N|

.

1.4 Fuzzy Cosine Similarity

The same is true for the fuzzy variant of Salton’s
index also called cosine similarity:

simS(M,N)
.
=
|M ∩N|√
|M||N|

.

1.5 Fuzzy Precision and Recall

If T is the target set and S the result of search in a
database then for both crisp and fuzzy sets precision
is defined as

precision(T,S)
.
=
|T ∩ S|
|S|

and recall as

recall(T,S)
.
=
|T ∩ S|
|T|

.

2 MONC Algorithm

The description of MONC given below follows the
text in our arXiv paper (Havemann et al. 2010)
which was then published in a journal (Havemann
et al. 2011). MONC’s code in R is available from
http://141.20.126.172/~div/code.html.

We assume that each node is its own natural com-
munity G at infinite resolution. The next vertex V
from the neighbourhood of G included to G is the
one that increases the fitness of G at the largest
value of resolution denoted by αincl(G,V).

2

http://141.20.126.172/~div/code.html

2.1 Pseudo Code

In pseudo code the growth of a natu-
ral community G can be described as fol-
lows (N(G) denotes the neighbourhood of
G):

1: while N(G) is not empty do
2: for each node V in N(G) do
3: calculate αincl(G,V)
4: end for
5: include the node with maximum αincl into G
6: end while

2.2 Fitness Function

If we use the fitness function as defined by Lanci-
chinetti, Fortunato, and Kertesz (2009) a node can-
not remain a single because for any α the module
fitness of a single is always zero and the module fit-
ness of two neighbours is always larger then zero.
We therefore add a one in the numerator of the fit-
ness function:

f(G,α) =
kin(G) + 1

(kin(G) + kout(G))α
. (1)

This is a minor change. Its influence dissapears for
larger communities.

2.3 Resolution Levels

From this definition we can derive a formula
for calculating the maximum value of resolution
αincl(G,V), where a node V does not diminish
the fitness of a module G when included in it
by demanding that for α < αincl(G,V) we have
f(G ∪ V, α) > f(G,α):

αincl(G,V) =
log(kin(G ∪ V) + 1)− log(kin(G) + 1)

log ktot(G ∪ V)− log ktot(G)
,

(2)
where ktot = kin + kout denotes the sum of the de-
grees of all nodes of a module.

We now derive formula 2 for calculating the max-
imum value of α, where a node V does not diminish
the fitness of a module G when included in it. For
V in neighbourhood of G we demand therefore

f(G ∪ V, α) > f(G,α). (3)

With definitions given above we then have

kin(G ∪ V) + 1

ktot(G ∪ V)α
>
kin(G) + 1

ktot(G)α
(4)

and therefore

kin(G ∪ V) + 1

kin(G) + 1
>

[
ktot(G ∪ V)

ktot(G)

]α
. (5)

We take logarithm on both sides of this equation
and get

log
kin(G ∪ V) + 1

kin(G) + 1
> α log

ktot(G ∪ V)

ktot(G)
. (6)

That means, if α < αincl with

αincl =
log(kin(G ∪ V) + 1)− log(kin(G) + 1)

log ktot(G ∪ V)− log ktot(G)
(7)

we have f(G ∪ V, α) > f(G,α).

2.4 Optimisation

We can calculate kin(G ∪ V) from kin(G) and
ktot(G ∪ V) from ktot(G) i.e. the current values
of the module from the preceding ones (which saves
computing time). For this we define the interaction
of a module and a node as

kinter(G,V) =
∑
i∈G

AV i, (8)

where A denotes the adjacency matrix of the undi-
rected (and in general) weighted graph and calcu-
late the degree of a node or its weight as the sum
of the weights of its edges

AV+ =
∑
i

AV i. (9)

The weight of edges of internal nodes kin is in-
creased by 2 · kinter because both directions have to
be taken into account:

kin(G ∪ V) = kin(G) + 2 · kinter(G,V). (10)

The total of all weights is increased by the weights
of the edges of the new node:

ktot(G ∪ V) = ktot(G) +AV+. (11)

We first include the neighbour V of each node
that improves the community’s fitness at highest
resolution. Then we continue with the new neigh-
bourhood of G ∪ V until all nodes are included in
the natural community. After each step we compare
the current communities of all nodes to find dupli-
cates. Thus we can reduce the number of commu-
nities treated by the inclusion algorithm and save
further computing time. We merge overlapping nat-
ural communities of nodes.

3

2.5 Cliques as Seeds

If a graph is characterised by a strong variation of
its local density and the seed node is located in a
high density region, the MONC algorithm imme-
diately leaves this region because it searches for
nodes with low degree first. These outside nodes
only moderately increase the number of links leav-
ing the community and thus often provide the ear-
liest increase in fitness. We solved this problem by
starting from cliques (i.e. totally linked subgraphs)
instead of single nodes. Lee et al., who applied the
LFK algorithm without the exclusion mechanism,
also found that cliques as seeds gave better results
than single nodes (Lee, Reid, McDaid, and Hurley
2010).

While Lee et al. (2010) use maximal cliques (i.e.
cliques which are not subgraphs of other cliques), we
optimise clique size by excluding nodes that are only
weakly integrated. Thus, for our starting points we
apply an analogue of the LFK exclusion mechanism.
In detail, we exclude the node V that diminishes
the module fitness at lowest resolution, i.e. has the
weakest coupling to the rest of the module G. Anal-
ogously to αincl we calculate αexcl with

αexcl(G,V) =
log(kin(G) + 1)− log(kin(G \ V) + 1)

log ktot(G)− log ktot(G \ V)
.

(12)
This procedure is repeated until only two nodes
remain in each clique. From the set of shrinking
cliques we select the one which is most resistant to
further reduction i.e. those with highest αexcl of the
next node to be excluded. After its exlusion the rest
of the clique would be less strongly coupled. That
means, we choose the most cohesive subgraph of a
clique as optimal.

After optimising all cliques larger than pairs we
determine the optimal clique belonging to a seed
node by searching for the clique where the seed is
member and has its maximum αexcl. Nodes which
are not member of any optimal clique remain single
seeds. Every other node is assigned to one clique,
some of them to the same one.

3 Fuzzification Algorithm

3.1 Approach

Our algorithm takes any set of crisp clusters as in-
put. The algorithm evaluates for every node at the
border of a cluster (a node with at least one link
crossing the crisp border) how the cluster would
gain or lose fitness if this node was to be included
or excluded. A fitness balance is calculated and
if positive the node will be included in the result-
ing cluster. The experiments have been conducted
by computing this balance for every node being in
or connected to the hard cluster without actually
changing the cluster in question. We add all nodes
with a positive fitness balance and remove all with
a negative one.

3.2 Pseudo Code

The borders of crisp clusters (i.e. ordinary sets of
nodes) in graph G are evaluated:

1: cluster.list← hierarchical.clustering(A)
2: for cluster ∈ cluster.list do
3: outsiders← neighbourhood(cluster)
4: eval.nodes← cluster + outsiders
5: new.cluster ← ∅
6: for V ∈ eval.nodes do
7: fit.incl← Fitness(incl(cluster, V))
8: fit.excl← Fitness(excl(cluster, V))
9: fit.balance← fit.incl − fit.excl

10: if fit.balance > 0 then
11: new.cluster ← new.cluster + V
12: end if
13: end for
14: end for

Since the arbitrary parameter α has been set to 1
it doesn’t influence the fitness calculation and has
therefore been left out here.

3.3 Expansion Details

The three graphs in figure 1 provide an idea of
how much each of the selected clusters expanded
during fuzzification. The number of nodes in the
original hard cluster is shown in red. Nodes that
belong to the hard cluster after fitness maximisa-
tion are shown in violet. Their membership grade
is assumed as being 1 because a decision has been
made by the algorithm whether or not to include

4

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

h−index

number of nodes

m
e

m
b

e
rs

h
ip

 g
ra

d
e

s

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

bibliometrics

number of nodes

m
e

m
b

e
rs

h
ip

 g
ra

d
e

s

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

webometrics

number of nodes

m
e

m
b

e
rs

h
ip

 g
ra

d
e

s

Figure 1: Fuzzy communities related to the three
topics (cf. text)

a node. The green curve represents a fuzzy view
on the expanded cluster, where the outside border
nodes have been taken into account. The member-
ship grade of every node inside the overlapping clus-
ter and directly connected outside nodes are repre-
sented in green. The nodes from the original hard
cluster have been ordered to the left.

Acknowledgements

This work is part of a project in which we develop
methods for measuring the diversity of research.
The project is funded by the German Ministry for
Education and Research (BMBF). We would like to
thank all developers of R.1

References

Havemann, F., M. Heinz, A. Struck, and
J. Gläser (2010). Identification of Overlapping
Communities and their Hierarchy by Locally
Calculating Community-Changing Resolu-
tion Levels. Arxiv preprint arXiv:1008.1004 .

Havemann, F., M. Heinz, A. Struck, and
J. Gläser (2011). Identification of Overlapping
Communities and their Hierarchy by Locally
Calculating Community-Changing Resolu-
tion Levels. Journal of Statistical Mechanics:
Theory and Experiment 2011, P01023. doi:
10.1088/1742-5468/2011/01/P01023, Arxiv
preprint arXiv:1008.1004.

Lancichinetti, A., S. Fortunato, and J. Kertesz
(2009). Detecting the overlapping and hierar-
chical community structure in complex net-
works. New Journal of Physics 11, 033015.
arXiv:physics.soc-ph/0802.1218.

Lee, C., F. Reid, A. McDaid, and N. Hurley
(2010). Detecting highly overlapping commu-
nity structure by greedy clique expansion. In
Proceedings of the 4th SNA-KDD Workshop.
ArXiv preprint arxiv:1002.1827.

Zadeh, L. A. (1968). Fuzzy algorithms. Informa-
tion and Control 12, 94–102.

1http://www.r-project.org

5

http://arxiv.org/abs/arXiv:0802.1218
http://www.r-project.org

	Fuzzy Sets
	The Characteristic Function
	Generalisation of Operations on Sets
	Fuzzy Jaccard Index
	Fuzzy Cosine Similarity
	Fuzzy Precision and Recall

	MONC Algorithm
	Pseudo Code
	Fitness Function
	Resolution Levels
	Optimisation
	Cliques as Seeds

	Fuzzification Algorithm
	Approach
	Pseudo Code
	Expansion Details

