The origin of large molecules in primordial autocatalytic reaction networks

Varun Giri and Sanjay Jain

Supporting Information: Table S3

List of reactions and their catalysts in $\operatorname{ACS}(36,28)$ (referred in Fig. 14 of main text)

The table lists all the reactions with their respective catalysts in the example of a catalyzed chemistry, quoted in the main text, containing a cascade of nested ACSs for $f=2$ generated using Algorithm 4. The steady state concentrations for this chemistry are displayed in Fig. 14. This chemistry was generated with $g=7$ and $n_{k}=3$.

The molecules in various generations are as follows: $P_{0}=\{(1,0),(0,1)\}, P_{1}=\{(1,1),(0,2),(2,0)\}, P_{2}=$ $\{(1,3),(2,2),(3,0)\}, P_{3}=\{(2,6),(2,3),(5,2)\}, P_{4}=\{(4,6),(7,4),(7,8)\}, P_{5}=\{(8,12),(6,12),(14,8)\}$, $P_{6}=\{(14,24),(22,20),(11,12)\}, P_{7}=\{(29,28),(36,28),(24,26)\}$.

The catalyst for a reaction listed under generation P_{k} is added at step k of algorithm. It is apparent from the reaction table that the ACSs are maximally overlapping, i.e., any ACS of generation k contains all the reactions of generation $k-1$.

Reaction	Catalyst added in generation						
	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$(0,1)+(0,1) \rightleftharpoons(0,2)$	$(1,1)$	$(1,3)$	$(2,3)$	$(7,4)$	$(8,12)$	$(11,12)$	$(29,28)$
$(0,1)+(1,0) \rightleftharpoons(1,1)$	$(0,2)$	$(1,3)$	$(2,6)$	$(4,6)$	$(14,8)$	$(22,20)$	$(36,28)$
$(1,0)+(1,0) \rightleftharpoons(2,0)$	$(1,1)$	$(3,0)$	$(5,2)$	$(7,4)$	$(14,8)$	$(14,24)$	$(29,28)$
$(1,0)+(2,0) \rightleftharpoons(3,0)$		$(2,2)$	$(5,2)$	$(4,6)$	$(14,8)$	$(14,24)$	$(24,26)$
$(1,1)+(0,2) \rightleftharpoons(1,3)$		$(1,3)$	$(2,6)$	$(7,8)$	$(8,12)$	$(14,24)$	$(24,26)$
$(0,2)+(2,0) \rightleftharpoons(2,2)$		$(1,3)$	$(2,6)$	$(7,8)$	$(6,12)$	$(22,20)$	$(29,28)$
$(0,1)+(2,2) \rightleftharpoons(2,3)$			$(2,6)$	$(7,4)$	$(14,8)$	$(22,20)$	$(24,26)$
$(3,0)+(2,2) \rightleftharpoons(5,2)$			$(2,3)$	$(7,8)$	$(6,12)$	$(11,12)$	$(29,28)$
$(1,3)+(1,3) \rightleftharpoons(2,6)$			$(5,2)$	$(7,8)$	$(14,8)$	$(22,20)$	$(24,26)$
$(2,0)+(2,6) \rightleftharpoons(4,6)$				$(4,6)$	$(14,8)$	$(22,20)$	$(36,28)$
$(2,2)+(5,2) \rightleftharpoons(7,4)$				$(7,4)$	$(6,12)$	$(14,24)$	$(36,28)$
$(5,2)+(2,6) \rightleftharpoons(7,8)$				$(7,4)$	$(14,8)$	$(14,24)$	$(36,28)$
$(2,6)+(4,6) \rightleftharpoons(6,12)$					$(14,8)$	$(11,12)$	$(29,28)$
$(4,6)+(4,6) \rightleftharpoons(8,12)$					$(14,8)$	$(22,20)$	$(36,28)$
$(7,4)+(7,4) \rightleftharpoons(14,8)$					$(8,12)$	$(11,12)$	$(36,28)$
$(3,0)+(8,12) \rightleftharpoons(11,12)$						$(22,20)$	$(36,28)$

continued on next page ...
...continued from previous page

Reaction	Catalyst in generation						
	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}
$(8,12)+(6,12) \rightleftharpoons(14,24)$						$(22,20)$	$(24,26)$
$(14,8)+(8,12) \rightleftharpoons(22,20)$						$(11,12)$	$(29,28)$
$(2,6)+(22,20) \rightleftharpoons(24,26)$							$(29,28)$
$(7,8)+(22,20) \rightleftharpoons(29,28)$							$(29,28)$
$(14,8)+(22,20) \rightleftharpoons(36,28)$							$(29,28)$

