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In the appendix, the following proposition of the effectiveness under complete interaction is proved:

Proposition. Assume that the population plays the β-stage RPD (β ≥ 1) for any given R,S, T, P which
satisfy T > R > P > S and R > (T + S)/2. The types of mixed reactive strategies n is sufficiently large
to contain any possible strategy. Also assume that shills use the strategy F-TFT. Then ∃x∗ ≥ 0, when
the proportion of shills is larger than x∗, the frequency of cooperation fc converges to one.

Before we prove, some preparations are necessary for the mathematical analysis.
As is known, the transformation R

′
= R − S, S

′
= S − S, T

′
= T − S, P

′
= P − S does not alter

the equilibrium point. So for any given R,S, T, P , firstly we make this transformation to have S = 0 in
following proofs without declaring any more.

Assume that there are n types of mixed reactive strategies for normal agents. Let A = {1, 2, . . . , n}
and P = A ∪ {n + 1} = {1, 2, . . . , n + 1}. The ith type of strategy is denoted as si, i ∈ A. We
also denote as sn+1 shills’ strategy F-TFT. Let xi(t), i ∈ P, denote as the proportion of a player with
si in t generation. They satisfy

∑
i∈P xi(t) = 1 for all t ≥ 0. Denote as f(si|sj) the expected total

payoff that a player with si receives from playing with a player with sj for the β-stage RPD. Then
the expected total payoff of the player with si is f(si|s̄(t)) =

∑
j∈P f(si|sj)xj(t). We also denote as

f(s̄(t)|s̄(t)) =
∑

i∈P xi(t)
∑

j∈P f(si|sj)xj(t) the average expected total payoff of the population. The
reproduction rule is actually the discrete-time replicator dynamics, rewritten as follows for i ∈ P:

xi(t+ 1) = xi(t)
f(si|s̄(t))
f(s̄(t)|s̄(t))

for t ≥ 0. (1)

Then we define a set E = {si : xi(∞) = limt→∞ xi(t) > 0}, which consists of those strategies existing
at the end. Note that here the definition of the limit in E is general, i.e. the trajectory of xi(t) may
approach to a limit cycle. It is easy to check that the set E is nonempty. Also denote the payoff of a
player with si in E by f(si|s̄(∞)) = limt→∞ f(si|s̄(t)). We give key properties of E in Lemma 1, which
extends the lemma in [1]:

Lemma 1. In the set E,
(1) if ∃t0 > 0, when t > t0, f(si|s̄(t)) ≥ f(sj |s̄(t)), then if sj ∈ E, we get si ∈ E;
(2) there do not exist the strategies si, sj in E such that either f(si|s̄(∞)) > f(sj |s̄(∞)) or f(sj |s̄(∞)) >
f(si|s̄(∞)) holds all the time.

Proof. If E contains only one element, two above arguments obviously hold. As follows we consider the
case that there are at least two elements in E.

(1) We prove the contrapositive form of the first argument, i.e. if conditions are satisfied, si ̸∈ E
implies that sj ̸∈ E. If si ̸∈ E,, that is, limt→∞ xi(t) = 0, then

0 < xj(t) = xj(0)
t−1∏
l=0

f(sj |s̄(l))
f(s̄(l)|s̄(l))

≤ xj(t0 + 1)

xi(t0 + 1)
xi(t) → 0 (2)
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So limt→∞ xj(t) = 0, that is, sj ̸∈ E.
(2) Suppose that f(si|s̄(∞)) > f(sj |s̄(∞)) holds all the time. When t is large enough, we get

xi(t+ 1)

xj(t+ 1)
=

f(si|s̄(t))
f(sj |s̄(t))

· xi(t)

xj(t)
≥ M · xi(t)

xj(t)
(3)

where M > 1. So xi(t)
xj(t)

increases monotonically. If limt→∞
xi(t)
xj(t)

= ∞, we get limt→∞ xj(t) = 0 due to

the boundedness of xi(t). It contradicts with sj ∈ E. If limt→∞
xi(t)
xj(t)

< ∞, we take the limit operation

to both side of inequality (3) and get limt→∞
xi(t+1)
xj(t+1) ≥ M · limt→∞

xi(t)
xj(t)

, which is impossible. Therefore

the conclusion is proven.

Lemma 2. For any two number sequences {αn}n≥1 and {βi,n}n≥1,i≤n, their limit satisfy:
(1) αn → a with n → ∞;
(2) βi,n → 0 with n → ∞, for given i;
(3)

∑n
i=1 βi,n → b with n → ∞ and

∑n
i=1 |βi,n| is bounded.

then

lim
n→∞

n∑
i=1

αiβi,n = a · b (4)

Proof. According to the definition of number sequence limit, it is known that
(1) ∀ε1 > 0, ∃N1, when n > N1, |αn − a| < ε1;
(2) For given i, ∀ε2,i > 0, ∃N2,i, when n > N2,i, |βi,n| < ε2,i;
(3) ∀ε3 > 0, ∃N3, when n > N3, |

∑n
i=1 βi,n − b| < ε3.

Thereby ∣∣∣∣∣
n∑

i=1

αiβi,n − ab

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

(αi − a)βi,n

∣∣∣∣∣+ |a| ·

∣∣∣∣∣
n∑

i=1

βi,n − b

∣∣∣∣∣ (5)

For the rightmost item of (5), |a| · |
∑n

i=1 βi,n − b| < |a| · ε3 when n > N3. In the meantime,∣∣∣∣∣
n∑

i=1

(αi − a)βi,n

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
i=1

(αi − a)βi,n

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=N+1

(αi − a)βi,n

∣∣∣∣∣ (6)

where we take N ≥ N1, which implies n > N1. Then∣∣∣∣∣
n∑

i=N+1

(αi − a)βi,n

∣∣∣∣∣ ≤
n∑

i=N+1

|αi − a| · |βi,n| < ε1 ·H (7)

where H is the bound of
∑n

i=1 |βi,n|. When n > N2 = max{N2,i} where i = 1, 2, . . . , N ,∣∣∣∣∣
N∑
i=1

(αi − a)βi,n

∣∣∣∣∣ ≤
N∑
i=1

|αi − a| · |βi,n| < ε2 ·
N∑
i=1

|αi − a| (8)

where ε2 = max{ε2,i} for i = 1, 2, . . . , N . Take N∗ = max{Nj} and ε > 3 ·max {εj ·Mj} for j = 1, 2, 3,

whereM1 = H, M2 =
∑N

i=1 |αi−a| andM3 = |a|, when n > N∗, |
∑n

i=1 αiβi,n − ab| < ε/3+ε/3+ε/3 = ε,
i.e.,

∑n
i=1 αiβi,n → a · b as n → ∞.
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Lemma 3. Assume that the population plays the β-stage RPD. For a normal agent with the strategy

(y, p, q) ∈ R[0, 1]3, the probability that shills with F-TFT cooperate is convergent to y+(β−1)p
β−(β−1)λ as sharing

times tend to be infinite, where λ = q − p.

Proof. Let b(γ,m) denote as the probability that a shill cooperates after m-th stage (m = 1, 2, . . . , β)
when knowledge of the normal agent is shared for γ times. As follows we prove that for m = 1, 2, . . . , β,

b(γ,m) → y+(β−1)p
β−(β−1)λ as γ → ∞. At first consider the limit of b(γ, β) as γ → ∞. According to the update

scheme, it can be calculated that

b(γ,m) =

{
y+βγ·b(γ−1,β)

βγ+1 m = 1
(βγ+m−1+λ)·b(γ,m−1)+p

βγ+m + λ△b(γ,m−1)
βγ+m m = 2, 3, . . . , β

(9)

where b(γ, 0) = b(γ − 1, β) and △b(γ,m− 1) = b(γ,m− 2)− b(γ,m− 1), m = 2, 3, . . . , β. So

b(γ, β) = f(γ)b(γ − 1, β) + g(γ)y + h(γ)p+ λ△E(γ)
· · ·

= b(0, β)
γ∏

i=1

f(i) + y
γ∑

i=1

g(i)
γ∏

j=i+1

f(j)+

p
γ∑

i=1

h(i)
γ∏

j=i+1

f(j) + λ
γ∑

i=1

△E(i)
γ∏

j=i+1

f(j)

(10)

where

c(i, j) = 1 +
λ

βi+ j
(11)

f(i) =
i

i+ 1

β−1∏
j=1

c(i, j) (12)

g(i) =
1

β(i+ 1)

β−1∏
j=1

c(i, j) (13)

h(i) =
1

β(i+ 1)

β−1∑
j=1

β−1∏
k=j+1

c(i, k) (14)

△E(i) =
1

β(i+ 1)

β−1∑
j=1

△b(i, j)

β−1∏
k=j+1

c(i, k) (15)

In the following we calculate the limit of b(γ, β) in (10) as γ → ∞.
First for limγ→∞

∏γ
i=1 f(i). Due to |λ| ≤ 1,

0 < f(i) ≤ βi

βi+ 1
= 1− 1

βi+ 1
< e−

1
βi+1 (16)

and

lim
γ→∞

γ∏
i=1

e−
1

βi+1 = lim
γ→∞

e−O(log γ) = 0 (17)

So limγ→∞
∏γ

i=1 f(i) = 0.
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Then for limγ→∞
∑γ

i=1 g(i)
∏γ

j=i+1 f(j). Let G(γ) =
∏β−1

i=1 c(γ, i), thus

γ∑
i=1

g(i)

γ∏
j=i+1

f(j) =
1

β(γ + 1)

γ−1∑
i=0

i∏
j=0

G(γ − j) (18)

=
F (γ)

β(γ + 1)
(19)

where F (γ) =
∑γ−1

i=0

∏i
j=0 G(γ−j). For γ ≥ 1, it holds that

(
1 + λ

β(γ+1)

)β−1

≤ G(γ) ≤
(
1 + λ

βγ

)β−1

, so

we obtain F (γ)’s upper bound F (γ) and lower bound F (γ). Expand F (γ) as λ’s polynomial and we can

calculate that limγ→∞
F (γ)

β(γ+1) = 1
β−(β−1)λ . Similarly limγ→∞

F (γ)
β(γ+1) = 1

β−(β−1)λ . So limγ→∞
F (γ)

β(γ+1) =
1

β−(β−1)λ , that is, limγ→∞
∑γ

i=1 g(i)
∏γ

j=i+1 f(j) =
1

β−(β−1)λ .

Third for limγ→∞
∑γ

i=1 h(i)
∏γ

j=i+1 f(j). It can be checked that limγ→∞
h(γ)
g(γ) = β − 1. Then

lim
γ→∞

γ∑
i=1

h(i)

γ∏
j=i+1

f(j) = lim
γ→∞

γ∑
i=1

h(i)

g(i)
· g(i)

γ∏
j=i+1

f(j) (20)

According to Lemma 2, we calculate that limγ→∞
∑γ

i=1 h(i)
∏γ

j=i+1 f(j) =
β−1

β−(β−1)λ .

Finally for limγ→∞
∑γ

i=1 △E(i)
∏γ

j=i+1 f(j). Here we testify limγ→∞
△E(γ)
h(γ) . Note that for 1 ≤ m ≤

β − 1, limγ→∞ △b(γ,m) = 0. Then limγ→∞
△E(γ)
h(γ) = limγ→∞

∑β−1
i=1 △b(γ,i)

∏β−1
j=i+1 c(j,γ)∑β−1

i=1

∏β−1
j=i+1 c(j,γ)

= 0. So according

to Lemma 2, limγ→∞
∑γ

i=1 △E(i)
∏γ

j=i+1 f(j) = 0.

In sum, limγ→∞ b(γ, β) = y+(β−1)p
β−(β−1)λ . According to (9), we can calculate that for m = 1, 2, . . . , β,

limγ→∞ b(γ,m) = y+(β−1)p
β−(β−1)λ .

Next we derive our proof of the effectiveness of soft control under complete interaction. As is illustrated
in Fig. 1, shills can replace normal agents. For the purpose of studying soft control to promote cooperation
in normal agents, we restrict the proportion of shills to be constant in each generation.

Proposition. Assume that the population plays the β-stage RPD (β ≥ 1) for any given R,S, T, P which
satisfy T > R > P > S and R > (T + S)/2. The types of mixed reactive strategies n is sufficiently large
to contain any possible strategy. Also assume that shills use the strategy F-TFT. Then ∃x∗ ≥ 0, when
the proportion of shills is larger than x∗, the frequency of cooperation fc converges to one.

Proof. According to Lemma 3, for a normal agent with the strategy s = (y, p, q), a shill cooperates with

the probability y+(β−1)p
β−(β−1)λ approximately after finite interactions.

The payoff of an s agent can be expressed as

f(s|s̄(t)) =
∑
i∈A

f(s|si)xi(t) + xn+1 · f(s|sn+1) (21)

Let f(s|ŝ(t)) =
∑

i∈A f(s|si)xi(t) and ỹ = y+(β−1)p
β−(β−1)λ , then f(s|sn+1) can be expanded as

f(s|sn+1) =
(
y 1− y

)(R 0
T P

)(
ỹ

1− ỹ

)
(22)

+(β − 1) ·
(
ỹ 1− ỹ

)(q 1− q
p 1− p

)(
R 0
T P

)(
ỹ

1− ỹ

)
(23)

= β(P + (T − 2P )ỹ + (R+ P − T )ỹ2) (24)
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where 0 ≤ ỹ ≤ 1. For above expression, three cases are considered:
(1) When R+ P = T , we get T > 2P , so the maximum of f(s|sn+1) is reached at ỹ = 1;
(2) When R+ P < T , the symmetry axis of f(s|sn+1) relative to ỹ is T−2P

2(T−R−P ) > 1 because 2R > T

which is obtained by one of restrictions to the payoff matrix R > T+S
2 when S = 0. Hence the maximum

of f(s|sn+1) is reached at ỹ = 1;

(3) When R+P > T , the symmetry axis of f(s|sn+1) relative to ỹ is T−2P
2(T−R−P ) =

1
2

(
1 + R−P

T−R−P

)
< 1

2 ,

thus the maximum of f(s|sn+1) is also reached at ỹ = 1.
So for arbitrary R,S, T, P satisfying conditions, the maximum of f(s|sn+1) is reached at ỹ = 1, i.e. y =

1, q = 1. Take s∗(t) = argmaxs=(1,p,1) f(s|ŝ(t)). Let x∗(t) = max{0,maxyi,qi ̸=1
f(si|ŝ(t))−f(s∗(t)|ŝ(t))

f(s∗(t)|sn+1)−f(si|sn+1)
} ≥

0. Then when xn+1 > x∗ = supt≥0 x
∗(t), we get ∀t ≥ 0, f(s∗(t)|s̄(t)) > f(si|s̄(t)) for all si ̸= s∗(t), so

there exists the strategy with y = 1 and q = 1 in E. And based on Lemma 1, we can prove that E
contains such the strategy exclusively. Therefore fc converges to one.

Note that the above proposition also holds when we consider the payoff matrix T = b > R = 1 > P =
S = 0 where b < 2 [2].
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