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Simulated read sets

To evaluate the performance of the GRAMMy, we generated a series of
simulated read sets using MetaSim [1], which is a tool specialized to simulate
large shotgun metagenomic read sets from input reference genomes and has
full-fledged simulating options, such as sequencing error models, population
variations and read length distributions.

In our simulation study, we randomly chose ten microbial genomes from
the collection of genomes given by the FAMeS study [2]. We then gener-
ated an artificial GRA vector from the power-law (Zipf’s) distribution [3]:

f(k;α,N) = 1/kα∑N

n=1
1/nα

with α = 2. Both the reference genomes and the

vector of relative abundance were provided to MetaSim, with its popula-
tion sampling option on, to generate a series of read sets, with RLs (read
length) in {50, 100, 200, 400, 800} bp, RN (read number) in {1000, 2000,
5000, 10000, 20000, 50000, 100000}, and SE (sequencing error mode) in
either ‘with’ and ‘without sequencing errors’. For each parameter triplet
(RL,RN, SE), we generated ten replicates.

To simulate the ‘with sequencing errors’ scenario, the sequencing errors
were introduced into read sets by enabling the ‘454’ or ‘Sanger’ error mode
option in MetaSim to mimic the reads generating behavior of the Roche/454
(RLs = 50-400 bp) and Sanger platforms (RL = 800bp). The read length
distribution option was also on to generate reads with normally distributed
lengths for the two platforms. These options were conservative because
MetaSim was originally published in 2008 and the technologies have been
greatly improved since then.

While generating the read replicates, we also permuted the order of all
the components in the GRA vector so that every genome had the chance to
become either a major or a minor member in the read sets. This permutation
procedure reduces the artifact introduced by manually choosing genomes and
their abundance levels, as a consequence, the robustness of estimation could
be assessed by measuring the standard deviations of all replicates’ estimates.

The series of replicated simulated read sets obtained above was then ex-
tended with additional non-replicated read sets with RN in {200000, 500000,
1000000} and RL, SE the same as above for larger scale benchmarks.

To evaluate the estimation with different community structures, we ran-
domly generated another GRA vector from the same power law distribu-
tion with larger variations in component abundances. We then repeated the
above read generation process for all parameter triplets (RL,RN, SE) using
this new GRA vector without replicates. This produced a new independent
series of read sets with significant differences in microbial community struc-
ture from the previous one. We labeled the new series ‘steep’ since its GRA
only had a few dominant species and the previous one ‘flat’ since its GRA
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was more evenly distributed.

Performance evaluation for simulations

We first used the same set of genomes used in read generation as our refer-
ence genomes. The alignment program BLAT was used to align the reads to
the references and the output was fed into GRAMMy, GAAS and MEGAN.
Then, we used different numerical error measures (see “Materials and Meth-
ods” in the main text) and their standard deviations to assess the quality
of the estimations.

In Figure S1, we plotted the measured errors (with deviation bars)
against the read number (RN) to show the convergence of the GRA es-
timates to their true values. It can be seen from Figure S1A that, as RN
increases, the Relative Root Mean Square Error (RRMSE) diminishes to
almost zero with decreased variation for all RLs, which indicates, regardless
of read lengths, the GRAMMy (‘map’) accurately converge to their true
values and become stable once the read number ensures a high coverage.
For instance, when 105 reads are available, the RRMSE is less than 2% and
its standard deviation is marginal for all RLs.

In Figure S1B, in addition to RRMSE, we measured the Average Relative
Error (AVGRE), the Maximum Relative Error (MAXRE), the Distance of
Total Variation (DTV) and their standard deviations for the read sets with a
RL equal to 100 bp. According to the plot, all four measures converge to zero
and stabilize. This pattern is similar using other read lengths. From Figures
S1A and S1B, we concluded that the GRAMMy estimation is accurate and
robust for different read lengths and error measures.

To further study the performance of GRAMMy within the limitations of
partially available reference genomes and current sequencing technologies,
we next added more perturbations to the simulation study, such as sequenc-
ing errors, unknown genomes. We also applied a different abundance dis-
tribution to evaluate the effects from the complexity of a community. The
results from these studies were summarized in a series of RRMSE-versus-RN
plots in Figure S2.

As we can see from Figure S2A, sequencing errors do affect the esti-
mation accuracy for short reads since the estimation accuracy for read sets
‘with sequencing errors’ is lower than that for ‘without sequencing errors’,
particularly at RLs ≤200 bp. However, for a reasonably large number of
reads, a scale routinely achieved in recent metagenomic read sets, the esti-
mates are close to the true values, as in the worst case here, the limiting
RRMSE is about 20% for the shortest read length (RL = 50 bp). We can
also infer from the plot that, developments from sequencing technologies,
such as increased read length and reduced error rates, can help to improve
the estimates. For example, at RN equal to 105 and ‘with sequencing er-
rors’, when the RL is increased from 50 to 200 bp, it helps to reduce the
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RRMSEs from 20% to 10% approximately. Moreover, when sequencing er-
rors are negligible, 50 bp reads are as informative as any longer ones in the
purpose of abundance estimation using our framework.

In reality, inaccuracies in the GRA estimation can also arise from the
limited knowledge of reference genomes. In the next simulation, we masked
out 50% of the reference genomes and repeated the estimations. As Figure
S2B indicates, a partial reference genome set does not substantially affect
the accuracy of estimates, despite that they become less robust at a low
sequencing depth. In fact, at a sufficient high coverage (RN equal to 106),
the estimates for read sets ‘with unknowns’ also converge and is compara-
bly accurate to that of ‘without unknowns’. Even if 80% of the reference
genomes were masked out, the estimation still had good convergence, as our
study indicates (data not shown).

Another factor that may affect the estimation is the community’s natural
complexity. To study this, we prepared two communities which are different
from each other in their shape of GRA distribution. In these read sets, the
GRA of the ‘flat’ sets is more spread among all genomes while that of the
‘steep’ sets is more concentrated on a few genomes. From the estimations,
as shown in Figure S2C, we do not observe significant effects resulting from
different complexities, though there are some decrease in accuracy for the
‘steep’ sets, which may be related to a less coverage of minority genomes.

We also compared GRAMMy to other methods. With the objective of
estimating the GRA of communities, we first benchmarked GRAMMy with
GAAS. In addition, we included MEGAN, which produces a read profile that
summarizes the number of reads assigned to their lowest common ancestors
(LCA). We estimated the GRA based on MEGAN using the normalized
percentages from the reads distributed on leaf taxon. The default options
of GAAS and MEGAN were used in our study. Figure S3A shows the
results from the simulation read sets with read lengths (RLs) equal to 100
or 400 bp generated from MetaSim using the with sequencing errors option.
We see that GRAMMy (‘map’) significantly outperformed GAAS, MEGAN
and GRAMMy (‘k-mer’) in all settings. Among all the methods tested,
GRAMMy (‘map’) is the only method with RRMSEs decreasing to zero as
the number of reads increases.

In addition to the above methods, We compared the 16S-based, rpoB-
based and BLAT hit counting estimates to GRAMMy estimates using our
simulated read set. Figure S3B shows that GRAMMy outperformed all other
methods in this controlled setting. All other methods show three obvious
drawbacks: a persisting bias, significant variation and a strong dependence
on the number of reads.

Finally, we evaluated the computation time and the error propagation
to higher taxonomic levels using our simulated data set. The time and
space complexity of our algorithm are shown to be O(c1c2n) and O(c1n),
respectively, where n is the size of the read set, c1 (related to associated
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genomes each read) and c2 (related to EM convergence criteria) are two
constants.

We benchmarked GRAMMy with MEGAN and GAAS for running time
with different RLs and RNs, see Figure 6. The mapping or alignment time
is excluded for all compared tools. We see GRAMMy is consistently faster
than the other two in processing the same read set and it scales as expected.
In addition, as shown in Figure S4, the errors gradually reduce from lower
to higher taxonomic levels. And the error is consistently small when the
RN is large. All the simulations are carried out on our “Dell, PE1950, Xeon
E5420, 2.5GHz, 12010MB RAM” computing nodes.

In conclusion, our simulations showed GRAMMy estimates are accurate
and stable across a range of anticipated settings. Furthermore, it is superior
in speed as compared to other available tools. An interesting observation is,
when the purpose is to estimate the abundance of a predefined set of refer-
ence genomes, an excessively ‘deep sequencing’ scheme is not necessary. As
shown in the subfigures of Figure S1-3, the RRMSEs start to stabilize when
the RN passes over 104 reads, which indicates there may be a threshold for
read number that is needed to recover the community abundance structure.
This trend also represents that, when the reads ambiguity are properly han-
dled, a read set of relatively smaller number can still provide substantial
information for the abundance estimation. Even though the specific thresh-
old value may differ in real settings, it can be predicted using pre-study
simulations and is informative for a more economical design of the actual
sequencing depth.

Derivation of the EM algorithm

Many estimation methods have been developed for estimating components’
mixing parameters for finite mixture models, among which are the Expec-
tation Maximization (EM) algorithm based approaches [4]. The EM based
solutions have been proved to be accurate and robust in many cases. Many
acceleration methods, like Aitken’s, Quasi-Newton and Conjugated Gradi-
ent, exist to improve its convergence rate for large size problems. Thus, we
adopted the EM based estimation as our solution to the MLE estimation in
the transformed mixture problem. In the EM framework, we further assume
a ‘missing’ data matrix Z, in which each entry zij is a random variable in-
dicating whether the read ri is from the genome gj . The model then can be
solved by estimating π and Z iteratively using Algorithm 1.
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Algorithm 1 Genome Relative Abundance estimation by Finite Mixture
Model(GRAMMy)

Require: read set R, reference genomes G, genome lengths L as inputs.
Variables: missing indices Z, reads probability f , mixing parameters π.
if backend is ‘map’ then

estimate f by mapping procedures by Equation (5).
end if
if backend is ‘k-mer’ then

estimate f by k-mer compositions by Equation (6).
end if
Mixing parameters π ⇐ Initialize() by moment estimates.
repeat
π′ ⇐ π
E-step: Z⇐ Prob(Z|π,R,G) as in Equation (3).
M-step: π ⇐MLE(π|Z,R,G) as in Equation (4).

until π′, π converged
Convert (π1, π2, ..., πm−1) to relative abundance a by Equation (1).
return a

We will describe the details of the algorithm in the following subsections.
Note: a variable with a superscript (t) stands for its value at the t-th itera-
tion in EM, e.g. π(t) is the estimate of π at the t-th step. The t-th iteration
in EM is:

• E-step
Assuming that mixing parameters π(t) are known, the ‘missing’ indica-
tor entries in Z(t) can be updated using their corresponding posterior
probabilities or:

z
(t)
ij = p(zij = 1|ri;π(t),G)

=
p(zij = 1, ri|π(t),G)

p(ri|π(t),G)

=
p(ri|zij = 1;π(t),G)p(zij = 1|π(t),G)
m∑
k=1

p(ri|zik = 1;a(t),G)p(zik = 1|π(t),G)

=
p(ri|zij = 1;G)π

(t)
j

m∑
k=1

p(ri|zik = 1;G)π
(t)
k

. (3)

Notice that we used p(ri|zij = 1;G, π(t)) = p(ri|zij = 1;G) because
of the independence of the two sampling steps in our mixture model
and that the read probability p(ri|zij = 1;G) can be accessed from
fgj (ri|G), which is to be approximated using different methods later.
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Obviously, the update of Z(t) depends solely on the updating value of
π(t).

• M-step:
Now, assuming ‘missing’ data Z(t) are known, we calculate new mixing
parameters π(t+1) that maximize the conditional expectation of the
full data log likelihood function Q(π|π(t)) of both the ‘missing’ and
the known data, i.e., we update them using:

π(t+1) = arg maxπ Q(π|π(t)),

where

Q(π|π(t)) = E(log L(R,Z|π,G)|R, π(t))

= E(log
n∏
i=1

m∏
j=1

(p(zij = 1|π,G)p(ri|zij = 1;π,G))zij |R, π(t))

= E(
n∑
i=1

m∑
j=1

zij(log p(zij = 1|π,G) + log p(ri|zij = 1;G))|R, π(t))

=
n∑
i=1

m∑
j=1

p(zij = 1|π(t),G)(log p(zij = 1|π,G) + log p(ri|zij = 1;G))

=
n∑
i=1

m∑
j=1

π
(t)
j (log πj + log p(ri|zij = 1;G)).

and

log L(R,Z|π,G) =
n∑
i=1

m∑
j=1

zij(log p(zij = 1|π,G) + log p(ri|zij = 1;G))

is the model log likelihood function for the complete data (Z, R). The
exact form of the maximum likelihood estimator (MLE) for Q(π|π(t))
can be found, and it can be expressed using a simple closed form in
π(t+1):

π
(t+1)
j =

n∑
i=1

z
(t)
ij

n
. (4)

When the MLE of π is found, using the one-to-one relation in Equation
(1), the MLE of a can be also found, thus we can solve the original biological
problem.

Derivation of the standard errors

Using the asymptotic theory for MLE estimates, we can derive the asymp-
totic covariance matrix for the mixing parameters π. Remember, there are
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m−1 independent parameters in π we are estimating and let us choose these
to be (π1, π2, ..., πm−1) and denoted by π̂. Let π̂∗ and a∗ be the MLE esti-
mates for π̂ and its corresponding GRA vector. We can derive the observed
information matrix Io,

Io(π̂|R,G) = −∂
2 log L(R|π̂,G)

∂π̂∂π̂T
,

where:

L(R|π̂,G) =
n∑
i=1

log(
m−1∑
j=1

πjfgj (ri|G) + (1−
m−1∑
j=1

πj)fgm(ri|G))

is the log likelihood function of the observed data R. Therefore, we write
each entry of Io as:

Io(π̂|R,G)kl =
n∑
i=1

(fgk(ri|G)− fgm(ri|G))(fgl(ri|G)− fgm(ri|G))

(
∑m−1
j=1 πjfgj (ri|G) + (1−

∑m−1
j=1 πj)fgm(ri|G))2

,

for k, l ∈ {1, 2, ...,m − 1}. Because the GRA vector a is a rank preserving
transformation of π̂, we can subsequently write the observed information
matrix Io(a|R,G) with regard to the parameterization of a as:

Io(a|R,G) = ∇a(π̂)T Io(π̂|R,G)∇a(π̂),

and the asymptotic standard error for our MLE estimate a∗j as:

SE(a∗j ) = (Cov(a∗))jj ≈ ((I−1o (a|R,G))jj)
1
2 |π̂=π̂∗ , (7)

for j ∈ {1, 2, ...,m − 1}, considering π̂ as the natural parameter set and
a as another parameter set, and that the asymptotic variance matrix can
be effectively calculated by taking the inverse of the observed information
matrix [5] and the standard error is the square root of variance entries on
the diagonal. Finally, we use Equation (7) as our standard errors for our
GRA estimates.

However, when the number of reads as compared to number of param-
eters is small or the majority of reads fails to be mapped, the asymptotic
condition is not met and the application of previous result is not valid. How-
ever, we can still use the bootstrap estimator for covariance to estimate the
standard error of our MLE using the empirical distribution:

SE(a∗j ) = (Cov(a∗))jj ≈
(

1

B − 1

B∑
b=1

(a∗(b) − ā∗)(a∗(b) − ā∗)T
)
jj

, (8)

where ā∗ = 1
B

∑B
b=1 a

∗
(b) is the bootstrap mean estimator of the samples’

MLEs.
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Convergence of the EM algorithm

Because the EM method is greedy, it may not converge to the global max-
imum of the objective function. However, in this case, we shall show the
observed data log likelihood function L(R|π̂,G) is concave with regard to
π̂. Thus, any local maximum the EM converge to is the global maximum.

PROPOSITION 1. L(R|π̂,G) is concave.
PROOF. Since the sum of concave functions is still concave, proving the

concavity of the log likelihood function of single observation suffices. Taking
the second-order derivatives of the summands of L(R|π̂,G), we have

∂2 log L(ri|π̂,G)

∂π̂∂π̂T
= − (fgk(ri|G)− fgm(ri|G))(fgl(ri|G)− fgm(ri|G))

(
∑m−1
j=1 πjfgj (ri|G) + (1−

∑m−1
j=1 πj)fgm(ri|G))2

.(9)

If consider the Hessian matrix H where the (k, l)-th element is Equation (9),
we can write H as H = −dvtv, where

v = (fg1(ri|G)− fgm(ri|G), ..., fgm−1(ri|G)− fgm(ri|G))

is a vector and

d =
1

(
∑m−1
j=1 πjfgj(ri|G) + (1−

∑m−1
j=1 πj)fgm(ri|G))2

is a scalar. Notice d ≥ 0, therefore H is negative semi-definite because
for any vector u = (u1, ..., um−1), we have uHut = −d(uvt)(uvt)t =
−d(uvt)2 ≤ 0. Thus, the concavity of the log likelihood function L(R|π̂,G)
is proved.
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