
Supporting material for “The interplay between microscopic and
mesoscopic structures in complex networks”

1 Update Equations

1.1 Statistical physics-based interpretation of the odds ratio

Before discussing the update equations for the specific models, we give short physical interpretation of the
generative model chosen to make its exponential form obvious and show the connection of the inference problem
in networks to classical disordered spin systems.

The odds ratio between the elements of the matrix D presented in the main text, which we reproduce here
for clarity, is

P(Diµ = 1∣θ⃗)
P(Diµ = 0∣θ⃗)

= αi
(1 − αi)

βµ

(1 − βµ)
Bσiτµ

(1 −Bσiτµ)
. (1)

It is possible to rewrite the above expression to obtain the probability distribution of the elements of the
matrix D as

P(Diµ∣θ⃗) ∝ exp [2Diµ − 1

2
(ai + bµ +Cσiτµ)], (2)

with

ai = ln
αi

(1 − αi)
, (3)

bµ = ln
βµ

(1 − βµ)
, (4)

Cσiτµ = ln
Cσiτµ

(1 −Cσiτµ)
. (5)

In physics terms, as the binary matrix D can be considered as a spin system defined by the entries Diµ

[1]. The above probability distribution can then be interpreted as the Gibbs equilibrium distribution of a non-
interacting system of spins with the local field hiµ = ai + bµ +Cσiτµ acting on each spin.

Obviously, a completely generic local field hiµ would be equivalent to having the same number of degrees of
freedom as entries in the matrix. This case would be non-informative as any data could be adjusted by defining
appropriately tailored values of the local fields. From a mathematical point of view, the structure embedded
in the local fields decreases the number of degrees of freedom. Physically, it can be justified by separating the
influence of the fields to the different effects which depend on the row (ai), column (bµ) and the corresponding
groups with which each of the specific elements Diµ is associated (Cσiτµ).

1.2 Learning model (1) for a bi-partite network

The probabilities defined via odds ratios in (1) can be written explicitly as

P(Diµ = x∣αi, βµ, σi, τµ,B) =
xαiβµBσiτµ + (1 − x)(1 − αi)(1 − βµ)(1 −Bσiτµ)

αiβµBσiτµ + (1 − αi)(1 − βµ)(1 −Bσiτµ)
, (6)

where x ∈ {0,1}. The belief propagation algorithm operates by passing messages between factors and variables
in an iterative way until convergence. For our model on a bi-partite network, the messages from factors to

1



variables will be given by

Riµ(σi = r) ≡ P(Diµ = Aiµ∣σi = r) = ∑
s

Xiµ
rsQiµ(τµ = s),

Riµ(τµ = s) ≡ P(Diµ = Aiµ∣τµ = s) = ∑
r

Qiµ(σi = r)Xiµ
rs ,

Riµ(αi = x) ≡ P(Diµ = Aiµ∣αi = x) = ∑
rs

Qiµ(σi = r)Y iµ
rs (αi = x)Qiµ(τµ = s),

Riµ(βµ = x) ≡ P(Diµ = Aiµ∣αi = x) = ∑
rs

Qiµ(σi = r)Y iµ
rs (βµ = x)Qiµ(τµ = s),

Riµ(Brs = x) ≡ P(Diµ = Aiµ∣Bab = x)
= ∑
a,b≠r,s

Qiµ(σi = a)Xiµ
abQiµ(τµ = b) +Qiµ(σi = r)Z

iµ
rs(Brs = x)Qiµ(τµ = s), (7)

and messages from variables to factors by

Qiµ(σi = r) ≡ P(σi = r∣A/Aiµ) ∝ P(σi = r)∏
ν≠µ

Riν(σi = r)

Qiµ(τµ = s) ≡ P(τµ = s∣A/Aiµ) ∝ P(τµ = s)∏
j≠i

Rjµ(τµ = s)

Qiµ(αi = x) ≡ P(αi = x∣A/Aiµ) ∝ P(αi = x)∏
ν≠µ

Riν(αi = x)

Qiµ(βµ = x) ≡ P(βµ = x∣A/Aiµ) ∝ P(βµ = x)∏
≠i

Rjµ(βµ = x)

Qiµ(Brs = x) ≡ P(Brs = x∣A/Aiµ) ∝ P(Brs = x) ∏
jν≠iµ

Rjν(Brs = x), (8)

where

Xiµ
rs ≡ ∫ dαidβµdBrsP(Diµ = Aiµ∣αi, βµ, σi = r, τµ = s,Brs) ×

Qiµ(αi)Qiµ(βµ)Qiµ(Brs),

Y iµ
rs (αi = x) ≡ ∫ dβµdBrsP(Diµ = Aiµ∣αi = x,βµ, σi = r, τµ = s,Brs) ×

Qiµ(βµ)Qiµ(Brs),

Y iµ
rs (βµ = x) ≡ ∫ dαidBrsP(Diµ = Aiµ∣αi, βµ = x,σi = r, τµ = s,Brs) ×

Qiµ(αi)Qiµ(Brs),

Ziµrs(Brs = x) ≡ ∫ dαidβµP(Diµ = Aiµ∣αi, βµ, σi = r, τµ = s,Brs = x) ×
Qiµ(αi)Qiµ(βµ). (9)

These integrations can be done numerically, keeping in mind that the range of all variables αi, βµ and Brs is
only (0,1). However, since P(Diµ = Aiµ∣θ⃗) is generally weakly dependent on any individual parameter, if the
distributions Qiµ(θk) have small to moderate variance, an expansion around the expectation values of θk under
Qiµ(θk) to zeroth order gives an excellent approximation. With the mean values calculated as

αiµ ≡ ∫ αiQiµ(αi)dαi,

βiµ ≡ ∫ βµQiµ(βµ)dβµ,

Biµ
rs ≡ ∫ BrsQiµ(Brs)dBrs, (10)
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we can simply insert these values into (1) to obtain

Xiµ
rs ≈ P(Diµ = Aiµ∣αiµ, βiµ, σi = r, τµ = s,Biµ

rs),
Y iµ
rs (αi = x) ≈ P(Diµ = Aiµ∣αi = x,βiµ, σi = r, τµ = s,Biµ

rs),
Y iµ
rs (βµ = x) ≈ P(Diµ = Aiµ∣αiµ, βµ = x,σi = r, τµ = s,Biµ

rs),
Ziµrs(Brs = x) ≈ P(Diµ = Aiµ∣αiµ, βiµ, σi = r, τµ = s,Brs = x). (11)

After convergence, the posterior marginals can be calculated from the resulting values of the messages as

P(σi = r∣A) ∝ P(σi = r)∏
µ

Riµ(σi = r),

P(τµ = s∣A) ∝ P(τµ = s)∏
i

Riµ(τµ = s),

P(αi = x∣A) ∝ P(αi = x)∏
µ

Riµ(αi = x),

P(βµ = x∣A) ∝ P(βµ = x)∏
i

Riµ(βµ = x),

P(Brs = x∣A) ∝ P(Brs = x)∏
iµ

Riµ(Brs = x). (12)

We see that at any point in time during the update sequence of the messages, the Q-Messages differ from
the current estimate of the posterior marginals only by a single R-Message. Since each variable receives a very
large number of these messages, we can conclude that the Q-messages depend only weakly on which R-Message
is left out. We may safely assume that the means of the variables in (10) will depend very weakly on µ for
αiµ, on i for βiµ and on i, µ for Biµ

rs such that each can be approximated by a single value. This reduces the
computational effort considerably. The same reasoning applies in the cases of uni-partite networks.

The computational complexity for an update of a single variable σi is O(Mqσqτ) where qσ and qτ are the
maximum number of classes allowed for σi and τµ, respectively, i. e. the size of the matrix B. Since there are
N variables σi to update, the total computational complexity scales as O(NMqσqτ), i. e. linear in the size
of the adjacency matrix and linear in the size of the model. The same complexity is achieved for the updates
of the αi, τµ, βµ and Brs variables. Convergence is generally reached in less than 100 update sweeps over all
variables.
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1.3 Update equations when learning model (1) for an undirected, uni-partite
network

In the case of undirected networks, we cannot differentiate between activity and popularity and hence we drop
the set of parameters βµ. The model probability of two nodes being connected or not then reads as:

P(Dij = x∣αi, αj , σi, σj ,B) =
xαiαjBσiσj + (1 − x)(1 − αi)(1 − αj)(1 −Bσiσj)

αiαjBσiσj + (1 − αi)(1 − αj)(1 −Bσiσj)
, (13)

where again x ∈ {0,1}. Using the same arguments as before, we can write the following definitions analogous
to (11)

Xij
rs ≈ P(Dij = Aij ∣αij , αji, σi = r, σj = s,Biµ

rs),
Y ij
rs (αi = x) ≈ P(Dij = Ai∣αi = x,αji, σi = r, σj = s,Bij

rs),
Zijrs(Brs = x) ≈ P(Dij = Aij ∣αij , αji, σi = r, σj = s,Brs = x), (14)

which lead to update equations of the form

Rij(σi = r) ≡ P(Dij = Aij ∣σi = r) = ∑
s

Xij
rsQij(σj = s),

Rij(αi = x) ≡ P(Dij = Aij ∣αi = x) = ∑
rs

Qij(σi = r)Y ij
rs (αi = x)Qij(σj = r)

Rij(Brs = x) ≡ P(Dij = Aij ∣Bab = x),
= ∑
a,b≠r,s

Qij(σi = a)Xij
abQij(σj = b) +Qij(σi = r)Z

ij
rs(Brs = x)Qij(σj = s), (15)

Qij(σi = r) ≡ P(σi = r∣A/Aij) ∝ P(σi = r)∏
k≠j

Rik(σi = r),

Qij(αi = x) ≡ P(αi = x∣A/Aij) ∝ P(αi = x)∏
k≠j

Rik(αi = x),

Qij(Brs = x) ≡ P(Brs = x∣A/Aij) ∝ P(Brs = x) ∏
kl≠ij

Rkl(Brs = x). (16)
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1.4 Update equations when learning a model from a directed, uni-partite
network

When studying directed networks, we have to take into account that a link from node i to node j is generally
not statistically independent from the link from node j to node i. The tendency for reciprocation can can be
modeled explicitly by introducing an additional parameter ρ, the value of which can be inferred from the data
alone.

In contrast to the models discussed so far, for directed networks the likelihood function does not factor into
terms corresponding to single links, but into terms corresponding to pairs of nodes:

L(θ⃗) ≡ P(A∣θ⃗) =∏
i<j

P(Dij = (Aij ,Aji)∣θ⃗). (17)

The individual dyad Dij can assume four different values: Dij = (1,1), corresponding to a reciprocated link
between nodes i and j, Dij = (1,0), corresponding to a non-reciprocated link between nodes i and j, Dij = (0,1),
corresponding to a non-reciprocated link between nodes j and i, and Dij = (0,0), corresponding an unconnected
pair of nodes i and j.

The explicit expression for the probability of a particular dyad configuration can be written using the abbre-
viation

Cij (x) = (αiβjBσiσj)x ((1 − αi)(1 − βj)(1 −Bσiσj))
(1−x)

, (18)

as

P(Dij = (x, y)∣αi, βi, αj , βj , σi, σj , ρ,B) =
ρxyσiσj(1 − ρσiσj)(1−xy)Cij (x) Cji (y)

∑1
a,b=0 ρ

ab
σiσj(1 − ρσiσj)(1−ab)Cij (x) Cji (y)

, (19)

where x, y ∈ {0,1} and we restrict ourselves to networks without selfloops, i. e. we consider only the the index
pairs (i, j) with i < j. Further, we have allowed the reciprocity parameter ρrs to depend explicitly on the latent
classes of nodes we infer. Hence, we allow reciprocity to vary between different latent classes of nodes. We
believe this to be a natural assumption.

5



We will make the same simplifying assumptions as in model (1) with respect to the simple calculation of
the terms X, Y and Z. In addition to the means already defined in (10), we introduce

ρijrs ≡ ∫ ρrsQij(ρrs)dρrs, (20)

as the mean value of the reciprocity in block r, s. Analogous to (11), we then write

Xij
rs ≈ P(Dij = (Aij ,Aji)∣αij , βij , αij , βji, σi = r, σj = s,Bij

rs, ρ
ij
rs),

Y ij
rs (αi = x) ≈ P(Dij = (Aij ,Aji)∣αi = x,βij , αji, βji, σi = r, σj = s,Bij

rs, ρ
ij
rs)

Y ij
rs (βi = x) ≈ P(Dij = (Aij ,Aji)∣αij , βi = x,αji, βji, σi = r, σj = s,Bij

rs, ρ
ij
rs),

Y ij
rs (αj = x) ≈ P(Dij = (Aij ,Aji)∣αij , βij , αj = x,βji, σi = r, σj = s,Bij

rs, ρ
ij
rs)

Y ij
rs (βj = x) ≈ P(Dij = (Aij ,Aji)∣αij , βij , αji, βj = x,σi = r, σj = s,Bij

rs, ρ
ij
rs),

Zijrs(ρrs = x) ≈ P(Dij = (Aij ,Aji)∣αij , βij , αji, βji, σi = r, σj = s,Bij
rs, ρrs = x)

Zijrs(Brs = x) ≈ P(Dij = (Aij ,Aji)∣αij , βij , αji, βji, σi = r, σj = s,Brs = x, ρijrs).
(21)

With these values calculated, the complete set of update equations becomes:

Rij(σi = r) ≡ P(Dij = (Aij ,Aji)∣σi = r) = ∑
s

Xij
rsQij(σj = s),

Rij(αi = x) ≡ P(Dij = (Aij ,Aji)∣αi = x) = ∑
rs

Qij(σi = r)Y ij
rs (αi = x)Qij(σj = s),

Rij(βi = x) ≡ P(Dij = (Aij ,Aji)∣βi = x) = ∑
rs

Qij(σi = r)Y ij
rs (βi = x)Qij(σj = s),

Rij(αj = x) ≡ P(Dij = (Aij ,Aji)∣αj = x) = ∑
rs

Qij(σi = r)Y ij
rs (αj = x)Qij(σj = s),

Rij(βj = x) ≡ P(Dij = (Aij ,Aji)∣βj = x) = ∑
rs

Qij(σi = r)Y ij
rs (βj = x)Qij(σj = s),

Rij(ρrs = x) ≡ P(Dij = (Aij ,Aji)∣Bab = x)
= ∑
a,b≠r,s

Qij(σi = a)Xij
abQij(σj = b) +Qij(σi = r)Z

ij
rs(ρrs = x)Qij(σj = s),

Rij(Brs = x) ≡ P(Dij = (Aij ,Aji)∣Bab = x)
= ∑
a,b≠r,s

Qij(σi = a)Xij
abQij(σj = b) +Qij(σi = r)Z

ij
rs(Brs = x)Qij(σj = s),

(22)

Qij(σi = r) ≡ P(σi = r∣A/Aij) ∝ P(σi = r)∏
i<k

Rik(σi = r)∏
l<i

Rli(σi = r),

Qij(αi = x) ≡ P(αi = x∣A/Aij) ∝ P(αi = x)∏
i<k

Rik(αi = x)∏
l<i

Rli(αi = x),

Qij(βi = x) ≡ P(βi = x∣A/Aij) ∝ P(βi = x)∏
i<k

Rik(βi = x)∏
l<i

Rli(βi = x),

Qij(ρrs = x) ≡ P(ρrs = x∣A/Aij) ∝ P(ρrs = x) ∏
k<l,kl≠ij

Rkl(ρrs = x),

Qij(Brs = x) ≡ P(Brs = x∣A/Aij) ∝ P(Brs = x) ∏
k<l,kl≠ij

Rkl(Brs = x),

(23)
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2 Structural analysis of undirected, uni-partite networks

As an example of inferring class structure in an undirected, unipartite network, we study another well known social
network: the Zachary Karate Club [2]. In the 1970’s, American sociologist investigated the social interactions
among the 34 members of a karate club at an American university. The social network recorded is shown in
figure 1. Over the course of the study, an argument between the instructor (node 1) and the manager (node
34) resulted in the split up of the club. The members siding with the manager in the conflict are drawn as
circles in figure 1, while those siding with the instructor are represented as squares. The network has become a
standard test case of “community detection” algorithms over the years, in particular after the publication of [3].
However, community detection algorithms already make one strong assumption about the network’s structure:
they suppose from the start that the network consists of groups nodes which are densely connected internally
and only sparsely connected between groups, i. e. they presuppose the existence of the very structure they search
for. In the light of this, it may actually not be surprising that community detection algorithms perform very well
at “inferring” the communities the club split into, since community detection only search for a good split of the
network, effectively assuming a diagonal preference matrix Brs from the start. The stochastic block models are
much more impartial in this respect as they allow a much richer topology between classes.

Figure 1: Network representation of Zachary’s Karate Club. Figure from [3].

When now estimating latent classes using a classic stochastic block model, we find a structure that is
remarkably different from the community structure so often cited for this club. Figures 2A and 2B show that
analyzing the data and estimating a model that included group effects only (model (2) in the manuscript), we
find a core-periphery structure, rather than a community structure! There are five core-members, including
the instructor and the manager of the club, which have many interactions with the rest of the club members,
while the remaining club members interact rather sparsely among each other. If we did not have the additional
information about the break-up of the club, then we could be perfectly content with the interpretation that the
social network of the club corresponding to its organizational structure, with manager and instructor plus a few
members at the center and the rest of the members in peripheral positions.

On the other hand, when estimating model (1) from the manuscript and explicitly including parameters to
model individual node activity in the class structure inference, then we can recover the observed split of the
club as a community structure as shown in 2C and 2D. Note that this time, we explicitly have not assumed a
community structure to search for. The model is still free to choose whatever preference matrix the data may
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support. Again, we see that including individual node effects markedly increases the agreement between class
structure inferred from network data and that observed based on domain information.

The example provides also a visual explanation for the way the message passing algorithm implements an
Occam’s razor. Comparing the posterior densities for the preference matrix Brs in figures 2B and 2C, we observe
that larger classes allow for sharper estimates of Brs

A B

C

Dα

Figure 2: Comparison of structure detected in Zachary’s Karate Club Network. A When inferring a
stochastic block model with 2 classes including only group effects (as in equation (2) in the manuscript),
we find a core-periphery structure, with the class assignment of nodes dominated by the different degrees.
B Posterior densities for the entries of the preference matrix Brs and expected vs. observed degrees in
the model. C When including node specific effects in the model estimated (as in equation (1) in the
manuscript), the preference matrix Brs is inferred as being practically diagonal and the observed degrees
distribution can be captured in the model. D The adjacency matrix ordered according to the classes
inferred using model (1) from the manuscript. The class assignments found correspond almost perfectly
to that observed in the real data, except for node 10 which cannot be assigned into one of the two
classes with certainty based on the data. Comparing with figure 1, we note that the connectivity of node
10 does in fact provide little evidence for a clear class assignment based on the network alone.
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3 Motif distribution in the C. elegans chemical synapse network

The box plots in figure 3c of the manuscript were obtained from motif counts in an ensemble of random networks
generated using model (19) with parameters estimated from the chemical synapse network of C. elegans and
allowing for 15 latent classes of nodes. The following figures 3 and 4 then show the adjacency matrix of the C.
elegans chemical synapse network together with complete posterior distributions of the estimated latent classes
P(σi∣A), the posterior means of the estimated αi and βi as well as the posterior distributions for the estimated
reciprocity ρ and preference matrix B. This allows for an assessment of the model fit as well as an overview of
the parameters estimated. Detailed information on the class assignment of each neuron can be found in the file
Dataset S1 included with the supporting material.
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4 Genes and diseases in the Diseasosome-Network

To obtain figure 4A, we learned both models (1), (2) and the Newman/Leicht (NL) model [4] from the disea-
sosome network published in [5]. The network contains the associations of genes and diseases from the Online
Mendelian Inheritance in Man (OMIM) morbidmap labeled with the highest confidence tag of “3” as of Decem-
ber 2005. Reference [5], provided an expert classification of the diseases into 22 classes, two of which, however,
were “multiple” and “undefined”. Therefore, we restricted our models to contain no more than 20 classes. The
NL model was originally specified for uni-partite networks. Adaptation to bipartite networks, however, is straight
forward. We here give the update formulas of the expectation maximization algorithm used [4]:
E-Step:

qiσ =
πσ∏µ θ

Aiµ
σµ

∑σ′ πσ′∏µ θ
Aiµ
σ′µ

and qµτ =
πτ ∏i θ

Aiµ
τi

∑τ ′ πτ ′∏i θ
Aiµ
τ ′i

(24)

M-Step:

πσ =
1

N
∑
i

qiσ and πτ =
1

M
∑
µ

qµτ

θσµ =
∑iAiµqiσ
∑i′ k′iqi′σ

and θτi =
∑µAiµqµτ
∑µ′ kµ′qµ′τ

(25)

Corresponding to model (1), we consider A as an actor-event matrix. The possible latent classes for actors
(rows) i are indexed with σ and for events (columns) µ with τ . Following the notation introduced in [4], πσ
then is the probability that any randomly chosen actor belongs to class σ and πτ is the probability that any
randomly chosen event belongs to class τ . Further, qiσ is the probability that a specific actor i belongs to class
σ and qµτ is the probability that a specific event µ belongs to class τ . Finally, θσµ is the probability that event
µ is attended by any actor of class σ, i. e. the “popularity” of event µ among the members of class σ and θτi is
the probability that actor i attends any event of class τ , i. e. the “activity” of actor i with respect to events in
class τ . Note how these θ-parameters are class specific as compared to the global popularities βµ and activities
αi of model (1). Initialization and update schedule was the same as in Ref. [4]. The probability of a single
matrix entry is then given up to a constant factor as P(Diµ = 1∣θ⃗) ∝ ∑στ πσqiσθσµπτqµτθτi.

For figure 4A, for each number of classes in the model, we choose the best (in terms of maximum likelihood
of the data under the parameters estimated) of 10 runs with different random initial conditions for models (1)
and (2) and the best of 50 runs with different random initial conditions for the NL model.

For figure 4B, we used the parameters estimated from best runs with 16 classes shown in figure 4A for
all three models. One candidate list ranking the possible associations was hence obtained for each model.
Conclusions from figure 4B are valid for other numbers of classes as well.

The following figure 5 shows the raw data including the posterior probabilities of class assignment and
maxima of posterior density of αi and βµ for model (1) with 16 classes. The raw data can be found in the file
Dataset S2 and additions to the database in the file Dataset S3. The complete assignment of diseases into
the 16 classes as shown in the example can be found in the file Dataset S4.
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