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Detailed Method for Numerical Bifurcation Analyses

A composite dynamical system

In our model, an autonomous circadian oscillator shown in Eqgs. 1-3 is driven by
light-dark (LD) cycles. We hypothetically consider three types of the transcriptional
response, X, during light phase (see Methods). The temporal changes in X(t) for the
transcriptional response with light adaptation (Figure 2A) and with slow response
(Figure 2B) are expressed as
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where T, Ts, Tg, and T, correspond to the period of the LD cycle, the duration that the
transcriptional response is sustained at the maximum value, X™, the decay-time, and
the rise-time. The first and second equations in Eqg. S1 or S2 correspond to the temporal
variations in the transcriptional response during the light phase of the LD cycle, while
the third equation represents the change during the dark phase. Then, the circadian
oscillator during the dark phase and during the light phase behaves the same as the
autonomous system in Eqgs. 1-3 with constant parameters vs and vs(1+X™®). However,
when the transcriptional response varies with time during the decay-time or the
rise-time the circadian oscillator behaves as a non-autonomous system whose the
parameter X varies over time. Therefore, the system in Eqgs. 1-3 with the light adaptation
or slow response in the transcriptional response under the LD cycles can be formalized
as a composite dynamical system so that the two corresponding autonomous systems
and a unique non-autonomous one are successively switched over time.

Poincaré map of composite dynamical system

Bifurcations occur when the stability of periodic oscillations changes by varying
system parameters. To investigate these bifurcations, we use a method involving a
stroboscopic map, also called the Poincaré map [50,59,60]. Thereby, the analysis of a



periodic oscillation is reduced to that of a fixed point on the Poincaré map.

Only the non-autonomous system with the temporal variation of the
transcriptional response given by Eq. S1 is considered in the following. The same
procedure can be applied by replacing the descriptions in regard to the first and second
equations in Eg. S1 with those in regard to the second and the first equations in Eq. S2.
Now let us consider the following non-autonomous differential equations consisting of
Egs. 1-3 and a periodic parameter variation of either Eq. S1 or S2 during the time
satisfyingt —t,(modT) [0, T):
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where teR denotes the time, x is the state vector x=(q',q’,q”)" .where ( )’

represents the transpose operation, j,<R™* denotes common parameters for f, and
A.€R Is a parameter specifying f; and f,, whereas ,,,1.€R are parameters
specifying f,. The parameters Aa, A, and A correspond to X™, T, and T4. We also
assume that the function, f, in Eq. S3 is periodic over time with the period of the LD
cycle, T, i.e., f(t + T, x, 2) = f(t, x, A) for all t. Assume that the whole solution to Eq. S3
is described as a mixed solution of the first, second, and third equations of Eq. S3. Then,
the solution with initial condition x = Xg at t =t is represented by

X(t) = o(t, Aito, X0) = @(t, Aos Aas Ap» Acitos Xo)- (S4)
Let g1, @2, and @3 correspond to solutions to the first, second, and third equations of Eq.
S3
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is defined as a composite map, St =St3°St,°Sr;, to avoid discontinuity in the

(S5)

derivative of the solutionatt=ty, t =ty + Ts, and t =ty + T + T4, Where St1, Sto, and Stz
are given by the submaps:
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In this way, the behavior of a periodic oscillation can be reduced to that of a fixed point
on the Poincaré map.

The numerical calculation of the fixed point

Considering the fixed point on the Poincaré map, we define a fixed-point equation
as

F(Xo) = Xo— St (Xo) =0, (S6)
where x,€ R" denotes the initial value at t = ty. Since the fixed point equation of Eq.
S6 cannot be solved analytically, we use a numerical approach to computing it such as
Newton's method. The recurrent formula for Newton's method is given by

Ve =0 4 5
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where v is an unknown variable, J is the correction term, and DF is the Jacobian matrix
of F denoted by

aXo
where |, is the nxn identity matrix. Consequently, we need to differentiate the

k=0,12,---,

Poincaré map, Sy, with respect to the initial value, Xq, to obtain each element of the
Jacobian matrix. Then, the derivative of the St with regard to xo is expressed by

oSt op

3_)(0()(0) = 5_)(0
The derivatives, ¢ /0xo, however, cannot be directly defined due to discontinuities in
the derivative of the solution. To avoid the impossibility of that derivative at t =ty + T,
to + Ts + Ty, and to + T, the first derivative of the Sy with respect to initial value Xo is
given by obtaining the derivatives of the submaps, successively, i.e.,

(t0+Ta/10)/1a)/1ba/1c;t01X0)'
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In Eq. S7, the derivatives of ¢;, for i = 1, 2, 3, regard to initial value x, for k =0, 1, 2,
which correspond to fundamental matrix solutions, i.e., O¢;j /OXk, can be obtained by
solving each of the first-order variational equations:
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and puttingt =ty + T, to + Ts + Ty, and to + T in the respective solutions to Egs. S8-S10.

The method for the bifurcation analysis

Next, we summarize a method of calculating a bifurcation set on an arbitrary
two-parameter plane. The numerical determination of a bifurcation set is accomplished
by using the method proposed by Kawakami [60] so that the accurate location of a fixed
point and a bifurcation parameter value are calculated by solving the fixed point
equation and the bifurcation condition simultaneously.

First, we select 4, € A as a bifurcation parameter and 4, € A, except for 13, as a
control parameter and also assume that a certain class of bifurcations occurs at the value
of 2; in the situation where all the other parameters are fixed. The codimension-one
bifurcations that the circadian system could produce are saddle-node, period-doubling,
and Neimark-Sacker bifurcations [50,58]. The conditions for the three bifurcations
correspond to the critical distribution of the eigenvalue in the characteristic equation for



Eq. S6: u=+Lu=-1, and|y| =1, respectively [50,58,59]. Then, let us consider the

following simultaneous equation consisting of the fixed point equation of Eq. S6 and
the characteristic equation for Eq. S6:

Xo— St (%0) }

Foet = *
t Let(ﬂ*h_DST(Xo»
where DsT(x’g) denotes the derivative of the Poincaré map, Sy, ie,

=0, (S11)

DsT(xg):asT(XO)/aqu_x* and 4 represent the value corresponding to the

bifurcation condition, e.g., this is z =1 for calculating a saddle-node bifurcation set.

Equation S11 can be solved for the unknown variables, xo and A1, by using Newton's
method. The Jacobian matrix of Fs required by Newton's method is

In_aST(XO) _GST(XO)
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where x(«") denotes the characteristic equation which is given as a determinant of the
following nxn matrix:

P(xo) =4 1, —8?—5)‘0), (S13)

i.e., x(u):= det (P) = 0. In Eq. S12, the derivatives of the characteristic equation, y(),
with respect to initial value X, can be obtained by using

orly’) _ _
i~ _édet(p,), (S14)

where P; represents matrices that are differentiated from each element of the ith column
of P with regard to xo. The derivatives of the characteristic equation related to parameter
Ay are the same as that in Eg. S14. Consequently, for calculating each element of the
Jacobian matrix of Eq. S12, it is necessary to obtain the first and second derivatives of
Poincaré map St with respect to the initial condition and the system parameter:
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for j=1, 2, 3, where qg denotes an element in the initial value xo. Then, each derivative

in Eq. S15 as well as the first derivative of Poincaré map S, with regard to the initial



value, Xo, can be given by obtaining the derivatives of the submaps, successively, i.e.,
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In particular, note that the derivatives of the Poincaré map with respect to parameters

specifying f;, for i = 1, 2, in Eq. S3, i.e., 44, A, and 4. are
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In Egs. S16-S18, each of the derivatives d¢,/0,,0/00, (09 /0x) and

8/0 (0 ¢,/0x), fori, j=1,2, 3, and k =0, 1, 2, can be obtained by integrating the
following first- and second-order variational equations at each interval of t =ty to t =t
+ Toforf, t=tg+Tstot=tg+ T+ Tqgforfy,andt =ty + Ts+ Tgtot =ty + T for f3,
respectively:
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Next, we slightly change the value of the control parameter, 1,, and then repeat
the same procedure to obtain a new bifurcation parameter value, ;. By repeating the
procedure and gradually changing the value of A,, we can obtain a bifurcation set on the
(A1, A2)-parameter plane. Figure S5A shows an example of two-parameter bifurcation



diagram of a periodic oscillation when the transcriptional response with the light
adaptation defined by Eq. S1 under the LD cycles is incorporated to the autonomous
circadian system defined by Egs. 1-3. For the case of slow response of transcriptional
response, a bifurcation diagram obtained by the above procedure is illustrated in Figure
S5B. The lower and upper limits of the entrainment region shown in Figures 3-5 and
Figure S2 were determined to calculate parameter values when the saddle-node and
period-doubling bifurcations occur in the case where the period of the LD cycle was
fixed as 24 h.



