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Model derivation

The equations for the entire system can be written as follows:

The equations for the mRNAs are:

d[mR1P1]
dt

=

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

))− δm14,1[mR1P1], (1)

d[mR4P1]
dt

=

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

))− δm14,1[mR4P1],

d[mR2P2]
dt

=

(
βP2[I]NaP2

kaP2 + [I]NaP2

)(
1

1 +
( [R4]NrP2

krP2

))− δm23,2[mR2P2],

d[mR3P2]
dt

=

(
βP2[I]NaP2

kaP2 + [I]NaP2

)(
1

1 +
( [R4]NrP2

krP2

))− δm23,2[mR3P2],

d[mR1P3]
dt

= P3tc

(
1

1 +
( [R3]NrP3

krP3

))− δm1,3[mR1P3], (2)

d[mR2P4]
dt

= P4tc

(
1

1 +
( [R3]Nr3,4

kr3,4

)
)(

1

1 +
( [R4]Nr4,4

kr4,4

)
)
− δm2,4[mR2P4],

d[mR3P5]
dt

= P5tc

(
1

1 +
( [R1]NrP5

krP5

))− δm3,5[mR3P5],

d[mR4P6]
dt

= P6tc

(
1

1 +
( [R1]Nr1,6

kr1,6

)
)(

1

1 +
( [R2]Nr2,6

kr2,6

)
)
− δm4,6[mR4P6],

The equations for the proteins are:
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d[R1]
dt

= ktl[mR1]− δR1[R1], (3)

d[R2]
dt

= ktl[mR2]− δR2[R2],

d[R3]
dt

= ktl[mR3]− δR3[R3],

d[R4]
dt

= ktl[mR4]− δR4[R4], (4)

where for instance [mR1] is the total concentration of R1 mRNA. In this case it has two contributions, from
the P1 and P3 promoter driven genes. [I] is the concentration of input and for example Nr3,4 is the Hill
co-efficient for R3 acting on the P4 promoter, δm14,1 is the degradation rate for the mRNAs for R1 and R4
from the P1 promoter controlled gene and kr2,6 is the binding affinity of R2 to the promoter P6. For clarity
the affinity used is kd = kN

A . βP1/2 are the maximum transcription rates from promoters P1 and P2, and
for instance P3tc is the unrepressed transcription rate from promoter P3. Hill functions, and their products,
are used to describe the relationship between the concentration of a transcriptional activator and the rate of
transcription (see main text).

A common way of reducing the dimensionality of gene network models is to assume that the mRNA reaches
equilibrium instantaneously for a change in the relevant transcription factor concentration [1]. Setting the
derivative to zero and solving for the mRNA concentration gives an algebraic relationship for the mRNA.
This can then be substituted in the ODEs describing the changes in proteins. Such a simplification allows the
dimensionality to be significantly reduced, while at the same time often maintaining the qualitative dynamics
of the larger system. There is however no biological justification for this simplification, and in certain cases
the qualitative dynamics are significantly affected [1][2]. However, it can be easily verified whether the two
models agree by simply performing simulations under both for identical parameter values.

The equilibrium assumption for [mR1] can be made by making an equilibrium assumption on [mR1P1] and
[mR1P3] i.e. by setting the derivatives in equations 1 and 2 to zero, and making [mR1P1] and [mR1P3]
the subjects, respectively. As stated, these can then be summed to find [mR1].

Setting the derivative to zero in equation (1):

0 =

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

))− δm14,1[mR1P1]. (5)

Solving for [mR1P1], we get:

[mR1P1] =
1

δm14,1

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

)). (6)

The ODEs describing protein dynamics require the total levels of each type of mRNA. As each mRNA has
contributions from two sources, the same instantaneous equilibrium assumption needs to be made for both
of these sources. This gives two algebraic relationships, one for each mRNA source. These can then be
summed to give the total concentration of the mRNA.

If the equilibrium assumption is made for the other source of R1 mRNA i.e. [mR1P3], this can then be
added to equation (6) to give the term for [mR1]:
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[mR1] =
1

δm14,1

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

))+
P3tc

δm1,3

(
1

1 +
( [R3]NrP3

krP3

)) (7)

This can then be substituted into equation (3) which gives the following.

d[R1]
dt

=
ktl

δm14,1

(
βP1[I]NaP1

kaP1 + [I]NaP1

)(
1

1 +
( [R2]NrP1

krP1

))+
ktlP3tc

δm1,3

(
1

1 +
( [R3]NrP3

krP3

))− δR1[R1] (8)

If this is done for all proteins, the model can be reduced to the following four ODEs.

d[R1]

dt
=
ktlβP1

δm14,1

 
[I]NaP1

kaP1 + [I]NaP1

! 
1

1 +
` [R2]NrP1

krP1

´
!

+
ktlP3tc

δm1,3

 
1

1 +
` [R3]NrP3

krP3

´
!
− δR1[R1], (9)

d[R2]

dt
=
ktlβP2

δm23,2

 
[I]NaP2

kaP2 + [I]NaP2

! 
1

1 +
` [R4]NrP2

krP2

´
!

+
ktlP4tc

δm2,4

 
1

1 +
` [R3]

Nr3,4

kr3,4

´
! 

1

1 +
` [R4]

Nr4,4

kr4,4

´
!
− δR2[R2],

(10)

d[R3]

dt
=
ktlβP2

δm23,2

 
[I]NaP2

kaP2 + [I]NaP2

! 
1

1 +
` [R4]NrP2

krP2

´
!

+
ktlP5tc

δm3,5

 
1

1 +
` [R1]NrP5

krP5

´
!
− δR3[R3], (11)

d[R4]

dt
=
ktlβP1

δm14,1

 
[I]NaP1

kaP1 + [I]NaP1

! 
1

1 +
` [R2]NrP1

krP1

´
!

+
ktlP6tc

δm4,6

 
1

1 +
` [R1]

Nr1,6

kr1,6

´
! 

1

1 +
` [R2]

Nr2,6

kr2,6

´
!
− δR4[R4],

(12)

where the maximum transcription rates β have been taken out of the Hill functions. By representing the
activating Hill functions as h+(X) and the repressive Hill functions as h−(X) where X is the relevant
repressor, the equations given in the main text are produced. In reality the translation rate ktl would be
different, meaning that each coefficient given in the main text i.e. ai, bi, ci and di, where i = 1, 2.
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