Case 1: a = 1

In this case, we have $Viab_{(1)}(K) = K$

PROOF

Equation
$$\begin{cases} \frac{d\Sigma}{dt} = (1-\Sigma)\Sigma(\Sigma^{a-1}s - (1-\Sigma)^{a-1}(1-s)) \\ s = u \; ; \; u \in \{-c, +c\} \end{cases}$$
 can be rewritten as:
$$\frac{d\Sigma}{dt} = (2u-1)\Sigma(1-\Sigma). \tag{1}$$

For $0.2 \leq \Sigma \leq 0.8$, we have $\Sigma(1 - \Sigma) > 0$. Thus, with u = 0.4, we have $\frac{d\Sigma}{dt} < 0$ and with u = 0.6, we have $\frac{d\Sigma}{dt} > 0$.

Then, for all the states $\Sigma \in K$, there exists at least one control function that maintains the system inside K, and all the states are viable.

Case 2: $a \neq 1$

For
$$\Sigma \in K$$
, $\frac{d\Sigma}{dt} = 0 \Leftrightarrow \Sigma = \left(\left(\frac{u}{1-u} \right)^{\frac{1}{a-1}} + 1 \right)^{-1} = E_u$, with $u = s$.

Case 2.1: a < 1

In this case, we have $Viab_{(1)}(K) = K$.

PROOF.

For $0.2 \leq \Sigma \leq 0.8$, $\forall u \in \{0.4, 0.6\}$, the equilibria are stable (see subsection Language Dynamics: the Abrams-Strogatz Model). In addition, it can be easily shown that, for $u \in \{0.4, 0.6\}$, $E_u \in K$. Thus, $\forall u$, the dynamics leads to a stable fixed point $E_u \in K$.

Case 2.2: a > 1

In this case, we have $Viab_{(1)}(K) = \{\Sigma \in K \text{ such that } E_{0.6} \leq \Sigma \leq E_{0.4}\}.$

PROOF.

- For all the points located inside the viability kernel, there exists one control that allows the system to stay inside the viability kernel. For $\Sigma \in Viab_{(1)}(K)$, we have $\frac{d\Sigma}{dt} < 0$ for u = 0.4 and $\frac{d\Sigma}{dt} > 0$ for u = 0.6.
- For all the points located outside the viability kernel, there is no control that allows the system to return to the viability kernel. For $\Sigma \in E$, we have $d\Sigma \in 0$ for m = 0.4 and $d\Sigma \in 0$ for m = 0.6 ($\Sigma = 0$).

For
$$\Sigma < E_{0.6}$$
, we have $\frac{d\Sigma}{dt} < 0$ for $u = 0.4$ and $\frac{d\Sigma}{dt} < 0$ for $u = 0.6$ ($\Sigma \to 0$).
For $\Sigma > E_{0.4}$, we have $\frac{d\Sigma}{dt} > 0$ for $u = 0.4$ and $\frac{d\Sigma}{dt} > 0$ for $u = 0.6$ ($\Sigma \to 1$).