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Supporting Information

Square waveform oscillators

Square waveform oscillators, like the van der Pol oscillator in the relaxation regime, cannot be described

by f(φ) presented in Equation 2. Therefore, we introduce a new function f(φ) given by

dr

dt
= λrn(1− r), (S1)

dφ

dt
= f(φ) =

ε

2

[
1− cos

πφ

6

]
+ offset. (S2)

For clarity, the oscillator is rescaled to a period of 24 h. Equation S1 describes the radial evolution

and has a stable orbit at r = 1, with a radial relaxation controlled by the parameters n and λ. Equation

S2 describes the phase evolution for a 24 h oscillator where ε controls the velocity difference between

the fastest, at φ = 6 and φ = 18, and slowest at φ = 0 and φ = 12 (see Figure S1). The “offset” is a

small positive constant and guarantees that the velocity is never zero (dφdt 6= 0). For ε = 1 we have large

velocity differences along the limit cycle, leading to a square waveform oscillator. The longest median

time to entrainment, 〈Te〉, is found when the oscillator has a sinusoidal temporal pattern (see box 1 in

Figure S1C). Keeping λ � 1 but increasing ε smoothly changes the sinusoidal waveform oscillator into

a square waveform oscillator (see box 3 in Figure S1C). The square waveform oscillator is also known as

relaxation oscillator due to its fast and slow branches. The oscillator spends most of its time on the slow

branches, around φ = 0 and φ = 12 so most stimuli are received on these branches. Square waveform

oscillators have, as the spike-like case, a small isochron divergence that allows considerable phase shifts

of pulses despite the limit cycle expansion effect. So as in the previous cases, the isochron clustering and,

consequently, their low divergence angles allow the system to reach the final stable phase much faster.

An increase in the relaxation rate λ leads to a drastic reduction in the median transient time 〈Te〉 as

well. In this case, the radial relaxation time is much shorter than the period keeping the trajectory to

the unperturbed limit cycle with r0 = 1. Thus pulses induce considerable phase shifts for every given

pulse and phase shifts are not reduced due to limit cycle expansion (see box 2 in Figure S1C).
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Alternative entrainment waveform and amplitudes

The entrainment pulse amplitude was defined in such a way that the resulting entrainment region re-

sembles the one observed in rat locomotor activity under light pulse entrainment (24 ± 2 h) [1]. Phase

response curves (PRCs) allow the classification of pulse strengths. A PRC describes the magnitude and

direction of the phase shifts of an overt rhythm as a function of the time at which the perturbation is

presented [2]. Small perturbations lead generically to a smooth PRC (type 1), whereas large pulses lead

to discontinuous PRCs of type 0 [3]. In this framework, a pulse amplitude of 0.8 can be classified as a

relatively large perturbation, but our results are qualitatively similar with small pulse amplitudes of 0.4

and for sinusoidal perturbations (see Figure S2).

Synchronization of coupled oscillators

Entrainment can be regarded as a particular case of coupled oscillators subject to unidirectional coupling.

Therefore, similar features observed in our results might be expected in other synchronization scenarios.

As a proof of concept, we studied the time to synchronization of two mutually coupled oscillators. We

numerically calculated the time to synchronization of two coupled “sloppy” oscillators as a function of

their waveform transition from sinusoidal to spike-like (see Figure S3A). The time to synchronization

is significantly reduced as the waveform changes from sinusoidal to spike-like. Further, we calculated

the time to synchronization of two coupled sinusoidal oscillators as a function of their radial relaxation

transition from a “sloppy” to a “rigid” oscillator (see Figure S3B). In this case, the time to synchronization

is reduced as we reduce the radial relaxation time τr = 1
λ . However, a more detailed characterization of

the time to synchronization for a system of coupled oscillators is beyond the scope of this paper. In our

simulations, the time to synchronization was defined as the time in which both oscillators reach a stable

phase difference (less than 5 minutes for a 24 h oscillator). Each point in figure S3 is the mean time

to synchronization calculated from 24 different temporal phase initial conditions. The oscillator model

is described by Equations 3 and 4 without forcing and with a pulse-like coupling in the y coordinate

described by the following equations:
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In order to model a pulse-like saturated coupling, we choose the logistic function with the coupling

strength k and the coupling pulse slope α. For Figure S3 we used k = 0.1 and α = 50.
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