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General properties of cell cycle behavior of PRC1 and YB1 
 
The cell-cycle time is 21.6 ± 2 hrs for PRC1 and 17.2 ± 2 hrs for YB1 clones. We 
measured the correlation between fluorescence levels of the tagged proteins PRC1 
and YB1 at the end of the cell cycle and several cellular factors such as cell cycle 
length, initial protein levels and cell size. For PRC1 we found low correlation with 
cell size (R = 0.21 p<0.05) and no correlation with cell cycle length (R = 0.02 p = 0.8) 
or with initial fluorescence levels (R = 0.09 p = 0.2). However, YB1 showed opposite 
tendencies: no correlation with cell size (R = 0.08 p = 0.3) and moderate correlation 
with cell cycle length (R = 0.44 p<0.05) and initial fluorescence levels (R = 0.5 
p<0.05) (Figure S8A-F). When no correlation is found it suggests that different 
aspects of the biological phenomena are independent of each other. On the contrary, 
when correlation is found, it may suggest causative connections between processes at 
different stages of the cell cycle and the protein level at the end of the cell cycle. 

We found strong correlation (R=0.99 for PRC1 and R=0.9 for YB1, p<0.05) 
between initial protein levels inherited by each daughter cell and the absolute amount 
of protein degraded at the beginning of the cell cycle (Figure S9A,B). In the case of 
PRC1 this correlation is due to the fact that almost all initial protein is degraded.  
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Figure S8: Correlation of fluorescence levels at end of cell cycle with  1. cell area 
at end of cell cycle (A-B), 2. cell cycle length (C-D), 3. fluorescence at beginning of 
cell cycle (E-F) and 4. Time of beginning of accumulation (G-H) for PRC1 and  YB1 
respectively. For PRC1 no significant correlation was found with any of the above 
four parameters. YB!, showed significant correlation  between protein levels at end of 
cell cycle and cell cycle age (D) and fluorescence at beginning of cell cycle (F). 
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Figure S9: Correlation across consecutive cell cycles. A,B) Correlation between 
fluorescent levels of tagged protein at the beginning of cell cycle and the absolute 
amount of degradation (measured as difference between initial levels and minimum 
levels) for PRC1 and YB1 respectively 
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Fitting parameters to the transcription inhibition experiment: 
 
A transcription inhibitor is added to the cell clones expressing YB1 at 0hrt = . If the 
inhibitor starts taking affect at time 0t  then the differential equations for mRNA levels 

( )r t  and protein levels ( )p t  are: 
 

 1R R
dr k P r
dt

α= −  (S 1) 

 

 P
dp k r
dt

=  (S 2) 

 
where 0Rk =  for 0t t> . The solution to these equations is detailed in Table S1: 
 
 

Table S1: Analytical solution for the dynamics of the mean mRNA and protein levels 
for the inhibition experiment done on YB1 reporter clones. 

 
01/ R t tα ≤�  0t t>  

( ) 1R

R

k Pr t
α

=  ( ) ( )01 R t tR

R

k Pr t e α

α
− −= ⋅  

( ) ( )1 1 0R P

R R

k k Pp t t p
α α

⎛ ⎞
= ⋅ − +⎜ ⎟

⎝ ⎠
 ( )

( )
( )

0
1

0
1 R t t

R P

R R

k k P ep t p t
α

α α

− −⎛ ⎞−
= ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
A good fit is achieved for 0 2.33hrt = , -10.77 hrRα =  as shown in Figure S8. This 
conforms to previous observations which indicate that the inhibitor starts taking affect 
approximately 2 hours after introduction. 
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Figure S8: Fitting the mean protein levels for the transcription inhibition experiment. 
Shown are the YB1 protein levels in individual cells (a), their mean (orange circles) 
(b). Fitting to the analytical solution (blue line) indicates that the inhibitor starts 
taking affect roughly 0 2.33t =  hours after introduction into the medium in line with 
Nyugen et al. (Nguyen, Giannoni et al. 1996). 
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A simple stochastic model describing transcription and translation: 

 
General description: 
 
Both PRC1 and YB1 can be described by a simple stochastic model for gene 
expression. The model assumes that mRNA is produced at rate Rk , and degraded with 
degradation rate Rα  (for PRC1 we assume that the mRNA is stable and take 0Rα ≈ ). 
Protein is produced at rate Pk  from each molecule of mRNA, and is taken to be stable 
throughout the cell cycle. The cell cycle is approximately 20 hours. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S9: A sketch of the stochastic model for transcription and translation. 

 
 
The master equation: 
 
Let ,r pf  represent the relative number of cells with p  copies of protein and r  mRNA 

molecules [i.e. the probability to be in state ( ),r p ]. The transitions between the 
different states may be described by Figure S10. The dynamics of ,r pf  is described by 
the following master equation: 
 

 ( ),
, , 1, , 1 1, ,1r p

R r p P r p R r p P r p R r p R r p

df
k f k rf k f k rf r f rf

dt
α α− − += − − + + + + −  (S 3) 

 
   
 

Protein ( p ) 

DNA 

mRNA ( r ) φ  

Rk

Prk

Rrα
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Figure S10: State diagram of the stochastic model for transcription and translation. 6 
arrows correspond to 6 terms: 3 incoming (+) and 3 outgoing (-). Note that r  cannot 
be negative due to the fact that the degradation from state 0r =  is proportional to 

0Rrα = . 
 
 
The master equation can be solved analytically for the mean and variance (and all 
higher moments) of the protein and mRNA levels. Using the generating function 
( ),F x y  and its derivatives with respect to x  and y  (as detailed in Table S2) the 

master equation can be written as: 
 

 R P R P R R
F F F FF k F k x k xF k xy x
x x x x

α α∂ ∂ ∂ ∂
= − − + + + −

∂ ∂ ∂ ∂

i
 (S 4) 

 

Substituting ( ) ,
, 1

, r p
r p

r p
F x y f x y

∞

=

= ∑  and comparing coefficients of r px y  from both 

sides of the equation, it is possible to obtain differential equations for the time-
dependent moments r , p , rp , 2r , and 2p . This is actually done by 
differentiating the master equation with increasing orders of x  and y , and 
substituting 1x y= = , see Table S3.  
 
 

( ),r p ( )1,r p+( )1,r p−

( ), 1r p −

( ), 1r p +

RkRk  

Rrα  ( )1R rα +

Prk

Prk
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Table S2: The generating function of ,r pf  and all its derivatives.   
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Table S3: Equations for time-dependent moments r , p , 2r , and 2p . 

 
 Equation How to derive this equation from the 

master equation. 
1 

R Rr k rα= −
i

 
Differentiate the master equation with 
respect to x , and substitute 1x y= = . 

2 
( ) ( )2 22 2R Rr r k r r rα− = − −

i Differentiate twice with respect to x , etc. 

3 
Pp k r=

i

 
Differentiate with respect to y . 

4 ( )2 2 Pp p k rp− =
i

 
Differentiate twice with respect to y . 

5 2
R P Rrp k p k r rpα= + −

i

 
Differentiate with respect to x  and then 
y . 

 
 
Analytical solution for time-dependent moments: 
 
Solving the differential equations in Table S3 for YB1 ( 0Rα > ) and PRC1 ( 0Rα = ), 
we obtain the time-dependent mean and variance of protein and mRNA in the cell 
population. From these quantities it is possible to calculate the Noise strength 

( ) 2NS /p p p= Δ  and Coefficient of variance ( )CV /p p p= Δ  of protein levels, 
as shown in Table S4. It can be seen that asymptotically (i.e., for 1/ Rt α� ), the mean 
protein level of YB1 is increasing linearly with time ( ~p t ), whereas for PRC1 it 

grows quadratically ( 2~p t ).  
 

For Poissonian processes, the variance is equal to the mean, and Noise strength is 
equal to 1. In our case we define a parameter b  to quantify the deviation from Poisson 
such that 2 / 1p p bΔ ≡ + . From Table S4 it is seen that for YB1 the non-

Poissonnian parameter is asymptotically constant, 2 /P Rb k α= , whereas for PRC1 it 
grows linearly with time: ( )2 / 3Pb k t= ⋅ . The CV however, is asymptotically 

decreasing with time for both cases: / ~ 1/p p tΔ . 

 
Using the expressions for the mean protein levels p , the Noise strength, and the 
CV, it is possible in principle to estimate the biochemical parameters Rk , Rα , and Pk  
from the experimental data of protein levels in single cells. It is important to note that 
when measuring the protein levels using fluorescent reporters, the mean number of 
proteins and the noise strength are multiplied by a proportionality factor which 
represents the number of fluorescent units per protein molecule. This factor has to be 
measured independently. However, the CV is invariant to measurement units. 
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Table S4: Mean time-dependent levels of protein p  and mRNA r , and their 
respective noise strengths. For YB1 the asymptotic behavior of the mean protein level 
is increasing linearly with time ( ~p t ), whereas for PRC1 it grows quadratically 

( 2~p t ). The non-Poissonian parameter b  is asymptotically constant for YB1, 
whereas it grows linearly for PRC1. For both cases the CV of the protein level is 
asymptotically decreasing with time as: / ~ 1/p p tΔ . 

 
 YB1 

Short mRNA lifetime 
PRC1 

Stable mRNA ( 0Rα → ) 

Mean r  ( )1 RtR

R

k e α

α
−−  

For long times: R

R

k
α

 

Rk t  

Mean p  1Rt
R

P
R R

k ek t
α

α α

−⎛ ⎞−
+⎜ ⎟

⎝ ⎠
 

For long times: R
P

R

kk t
α

⋅  

2

2
P Rk k t⋅  

Noise strength 
2r

r
Δ

  
1 

 
1 

Noise strength 
(asymptotically): 

2

1
p

b
p

Δ
≡ +  

21 P

R

k
α

+  21
3

Pk t+ ⋅  

 
 
 
Simulation: 
 
In order to simulate the stochastic process we use the Gillespie algorithm: 
1. Define the species: r , p . 
2. Define the reactions:  

(i) Production of mRNA  
(ii) Degradation of mRNA  
(iii) Production of protein. 

3. Initialize: 0t = , 0r r= , 0p p= . 
4. For each iteration: 

a. Calculate probabilities for all reactions: 1 Ra k= , 2 Ra rα= , 3 Pa rk= , and the 
total probability: 0 1 2 3a a a a= + + . 
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b. Calculate the time T  for next reaction, and the next reaction m . The basic 
assumption is that the probability that reaction m  will occur after time interval 
T  is: ( ) 0, a T

mP T m a e−= . 

(i) Choose two random numbers: [ ]1 2, 0,1r r ∈ , 

(ii) Time for next reaction: Solve 0
1

a Tr e−=  for T . 
(iii) Which is the next reaction?  

Find m  such that: 1 1 2 0 1 1... ...m m ma a r a a a a− −+ + < < + + + . 
c. Update:  

(i) Update time: t t T→ + . 
(ii) Execute reaction m . See Table S4 

 
 
 

Table S5: The reactions and their probabilities as implemented by the Gillespie 
algorithm for simulating PRC1 and YB1 gene expression. 

 
m  Probability Reaction implementation 
1 1 Ra k=  1r r→ +  
2 2 Ra rα=  1r r→ −  
3 3 Pa rk=  1p p→ +  
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A model including stochastic gene activation and inactivation 
 
General description: 
 
A more complete description of gene expression in eukaryotic cells should take into 
account the stochastic process of gene activation and deactivation. These fluctuations 
occur due to random events of binding and unbinding of the DNA to the chromatin 
("chromatin remodeling"). The gene is active and mRNA can be produced only when 
the DNA is "open", i.e. not bound tightly to the chromatin – see figure S11. We 
assume that the transitions between active and inactive states occur at rates onk  and 

offk , and are rather slow (a few events per hour). Mathematically this process is 
known as a "Telegraph process". 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure S11: A sketch of the stochastic model for gene expression, including the 
relatively slow process of gene activation and inactivation. The transition between 
open and closed conformations occurs at rates offk  and onk . 

 
 
 
The master equation: 
 
Let , ,1r pf  represent the relative number of cells with open DNA, p  copies of protein, 
and r  mRNA molecules, and let , ,0r pf  represent the relative number of cells with 

same parameters but closed DNA [i.e. , ,r p df  is the probability to be in state ( ), ,r p d  

where { }0,1d ∈ ].  
 

Protein ( p ) 

Open DNA
( 1d = ) 

mRNA ( r ) 

Rk

Prk

Closed DNA 
( 0d = ) 

onk

offk

φ
Rrα



 - 13 -      

The transitions between the different states are shown in Figure S12. The dynamics of 
, ,r p df  is described by two master equations: one for 0d =  (inactive state) and one for 

1d =  (active state): 
 

( ), ,1
, ,1 , ,1 1, ,1 , 1,1 1, ,1 , ,1

, ,0 , ,1

1 ...

...

r p
R r p P r p R r p P r p R r p R r p

on r p off r p

df
k f k rf k f k rf r f rf

dt
k f k f

α α− − += − − + + + + − +

+ −
 (S 5) 

 

( ), ,0
, ,0 , 1,0 1, ,0 , ,0

, ,1 , ,0

1 ...

...

r p
P r p P r p R r p R r p

off r p on r p

df
k rf k rf r f rf

dt
k f k f

α α− += − + + + − +

+ −
 (S 6) 

      
 
These coupled equations can be solved analytically for the mean and variance (and all 
higher moments) of the protein levels p  and mRNA levels r , as well as for the gene 
activity d .  
 
For this model we use two generating functions (Peccoud and Ycart 1995) that 
correspond to the two states , ,1r pf  and , ,0r pf  (see Table S6):   

 

 ( )1 , ,1
, 0

, r p
r p

r p
F x y f x y

∞

=

= ∑  (S 7) 

 

 ( )0 , ,0
, 0

, r p
r p

r p
F x y f x y

∞

=

= ∑  (S 8) 

 
Using the above formalism, the two master equations can be written as: 
 

1 1 1 1
1 1 1 0 1R P R P R R on off

F F F FF k F k x k xF k xy x k F k F
x x x x

α α∂ ∂ ∂ ∂
= − − + + + − + −

∂ ∂ ∂ ∂

i
 (S 9) 

 

0 0 0 0
0 1 0P P R R off on

F F F FF k x k xy x k F k F
x x x x

α α∂ ∂ ∂ ∂
= − + + − + −

∂ ∂ ∂ ∂

i
 (S 10) 

 

Again, substituting ( ) , ,
, 0

, r p
d r p d

r p
F x y f x y

∞

=

= ∑  and comparing coefficients of r px y  

from both sides of the equation, it is possible to obtain differential equations for the 
time-dependent moments d , 2d , r , p , rp , 2r , and 2p  - see Table S7. 
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Figure S12: State diagram of the stochastic model including random gene activation-
inactivation. The production of mRNA [reactions ( ) ( )1, , , ,r p d r p d− →  and 

( ) ( ), , 1, ,r p d r p d→ + ] is possible only when the gene is in active state.  
 
 

offd k⋅( )1 ond k− ⋅

Active state 
1d =  

( ), ,1r p ( )1, ,1r p+( )1, ,1r p−

( ), 1,1r p −

( ), 1,1r p +

Rk  

Prk

Prk

Rrα  

Rk

( )1R rα +

( ), ,0r p

( ), 1,0r p −

( ), 1,0r p +

Prk

Prk

Inactive state 
0d =  

( )1, ,0r p+( )1, ,0r p−
Rrα  ( )1R rα +
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Table S6: The generating function of , ,r p df  and all its derivatives (where 

( ) , ,
, 0

, r p
d r p d

r p
F x y f x y

∞

=

= ∑  and { }0,1d ∈ ). The sum of the two generating functions 

( ) ( ) ( )0 1, , ,F x y F x y F x y= +  describes the total probability , , ,0 , ,1r p r p r pf f f= +  for 
the number of proteins and mRNA. Note that the generating functions for each state 
alone are not normalized to 1; rather, substitution of 1x y= =  gives the 
probabilities to be in states 0d =  and 1d = : ( )0 01,1F P=  and ( )1 11,1F P= . 

   
 

Generating function Coefficient 
of r px y  

Substitution of 1x y= =  

( ) , ,
, 0

, r p
d r p d

r p
F x y f x y

∞

=

= ∑  , ,r p df  ( ) , ,
, 0

1,1d r p d d
r p

F f P
∞

=

= =∑  

( ) ( )0 1 0 11,1 1,1 1F F P P+ = + =  

0 1 10 1d P P P= ⋅ + ⋅ =  
2 2 2

0 1 10 1d P P P= ⋅ + ⋅ =  

, ,
, 0

r p
d r p d

r p
F f x y

∞

=

= ∑
i i

 
, ,r p ddf

dt
 

, , , ,
, 0 , 01,1d r p d r p d d

r p r p

d dF f f P
dt dt

∞ ∞

= =

= = =∑ ∑
i i

 

( ) ( )0 1 0 1 1 0
1,1 1,1

d dF F P P
dt dt

+ = + = =
i i

 

1
, ,

, 0

r pd
r p d

r p

F f rx y
x

∞
−

=

∂
=

∂ ∑  ( ) 1, ,1 r p dr f ++
 , ,

, 01,1
d

r p d d
r p

F f r r
x

∞

=

∂
= =

∂ ∑  
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Table S7: Equations for time-dependent moments r , p , 2r , and 2p . The 

moments r , p , 2r , rp , and 2p  are given by summing up the averages 

...
d

 over the two states { }0,1d ∈ : 
0 1

r r r= + , 
0 1

p p p= + , 
2 2 2

0 1
r r r= + , 

0 1
rp rp rp= + , and 2 2 2

0 1
p p p= + .  

   

Equation How to derive this equation 
from the master equation. 

(1) 1 0 1on offP k P k P= −
i

 

(2) 0 1 0off onP k P k P= −
i

 

substitute 1x y= =  

(3) 11 1 0 1R R on offr k P r k r k rα= − + −
i

 

(4) 
0 0 1 0R off onr r k r k rα= − + −

i

 

(3+4) 1R Rr k P rα= −
i

 

Differentiate the master 
equation with respect to x , 
and substitute 1x y= = . 

(5) 
( ) ( )

( ) ( )

2
1 11 1

0 1

1 2 2 ...

... 1 1

R R

on off

r r k r r r

k r r k r r

α− = − − +

+ − − −

i

 

(6) 
( ) ( )

( ) ( )

2
00 0

1 0

1 2 ...

... 1 1

R

off on

r r r r

k r r k r r

α− = − − +

+ − − −

i

 

(5+6) ( ) ( )2
1

1 2 2R Rr r k r r rα− = − −
i

 

Differentiate twice with 
respect to x , etc. 

(7) 
1 1 0 1P on offp k r k p k p= + −

i

 

(8) 
0 0 1 0P off onp k r k p k p= + −

i

 

(7+8) Pp k r=
i

 

Differentiate with respect to y  

(8) ( ) ( ) ( )11 0 1
1 2 1 1P on offp p k rp k p p k p p− = + − − −

i

 

(9) ( ) ( ) ( )00 1 0
1 2 1 1P off onp p k rp k p p k p p− = + − − −

i

 

(8+9) ( )1 2 Pp p k rp− =
i

 

Differentiate twice with 
respect to y . 

(10) 2
1 1 1 0 11R P R on offrp k p k r rp k rp k rpα= + − + −

i

 

(11) 2
0 0 1 00P R off onrp k r rp k rp k rpα= − + −

i

 

(10+11) 2
1R P Rrp k p k r rpα= + −

i

 

Differentiate with respect to x  
and then y  
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Analytical solution for time-dependent moments: 
 
Solving the differential equations in Table S8 for YB1 ( 0Rα > ) and PRC1 ( 0Rα = ), 
we obtain the time-dependent mean and variance of protein and mRNA in the cell 
population. From these quantities we calculate the Noise strength ( ) 2NS /p p p= Δ  

and Coefficient of variance ( )CV /p p p= Δ  of protein levels, as shown in Table 
S8. Again, it can be seen that asymptotically (i.e., for 1/ Rt α� ), the mean protein 
level of YB1 is increasing linearly with time ( ~p t ), whereas for PRC1 it grows 

quadratically ( 2~p t ).  

 

As in the previously described model, the non-Poissonian parameter 2 / 1b p p≡ Δ −  
is asymptotically constant for YB1, whereas for PRC1 it grows linearly with time. 
The CV is asymptotically decreasing with time for both cases: / ~ 1/p p tΔ . 
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Table S8: Mean asymptotic time-dependent levels of protein p , mRNA r , and 

gene activity d  and their respective noise strengths. Note that the mRNA levels are 
also non-Poissonian (i.e., Noise strength larger than 1) in this case due to the 
telegraph process of gene activation and inactivation. Note also that the Noise 
strength of the telegraph process is smaller than 1. The results of the simple model 
previously summarized in Table S4 correspond to the case of 1 1P ≈ , which occurs 
when the gene inactivation rate is very small compared to the activation rate: 

on offk k� . The meanings of symbols 1P , Rb , and Pb  are given in Table S9.  

 
 YB1 

Short mRNA lifetime 
PRC1 

Stable mRNA ( 0Rα → ) 

The probability dP  to be 
in an open/closed 
configuration. 

1
on

on off

kP
k k

=
+

, 0
off

on off

k
P

k k
=

+
 1

on

on off

kP
k k

=
+

, 0
off

on off

k
P

k k
=

+
 

Mean gene activity d  1P  1P  

Mean r  
1

R

R

kP
α

 1 RPk t⋅  

Mean p  
1

R
P

R

kPk t
α

⋅  2
12

P Rk k P t⋅  

Noise strength 
2d

d
Δ

 11 P−  11 P−  

Noise strength 
2r

r
Δ

  ( )( )
( )1

1

1

1 1

off R

off on off on R

on
R

on R

k k
k k k k

kb P
k P

α

α

+ =
+ + +

= + −
+

 ( )
( )

2

1

2
1

1 2 1

off R

off on

R

k k

k k

P b

+ =
+

= + −

 

 

Noise strength 
2p

p
Δ

 
( )

( )

( )

2

1

1

21 1

21 1 1

1 2 1 1

off RP

R off on

P
R

R

P R

k kk

k k

k P b

b P b

α

α

⎛ ⎞
⎜ ⎟+ + =
⎜ ⎟+⎝ ⎠

⎡ ⎤= + + − =⎣ ⎦

⎡ ⎤= + + −⎣ ⎦

 

( )

( )

2

2

1

221 1
3

21
3

21 1 2 1
3

off RP

off on

P

P
R

k kk t
k k

rk t
r

k t P b

⎛ ⎞
⎜ ⎟+ ⋅ + =
⎜ ⎟+⎝ ⎠

Δ
= + ⋅ =

⎡ ⎤= + ⋅ + −⎣ ⎦
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Table S9: Notations used in Table S8. 
 
Symbol Biological meaning 

1
on

on off

kP
k k

=
+

, 0
off

on off

k
P

k k
=

+
 

The asymptotic probability to be 
active/inactive state. 

/
1 /

R offR
R

off on on off

k kkb
k k k k

= =
+ +

 
The mRNA burst size:  
If on offk k�  this is the average number of 
mRNA's produced per single gene 
activation event. 

P
P

R

kb
α

=   

 

The protein burst size:  
The average number of proteins 
translated from a single mRNA molecule 
during its lifetime. 

 
 
 
 
Simulations: 

 
Again we simulate the stochastic model using the Gillespie algorithm with the species 
r , p , d . The reactions and their respective probabilities are detailed in Table S10.  
 

 
Table S10: The reactions and their probabilities as implemented by the Gillespie 
algorithm for simulating PRC1 and YB1 gene expression with gene activation and 
inactivation. We assume that both proteins are stable ( 0Pα = ). For YB1 the mRNA 
lifetime is short ( 11hrRα

−≈ ), whereas for PRC1 mRNA is stable ( 0Rα = ). Note that 
the probability is a product of the velocity of the reaction and the numbers of ways the 
molecules of the reactants participating in this reaction can interact. For example, for 
the reaction "DNA produces one mRNA molecule" ( 1m = ) the probability is the 
product of the velocity of the reaction ( Rk ) and the active DNA concentration ( d ). 

 

 
m  Probability Reaction implementation 
1 1 Ra dk=  1r r→ +  
2 2 Ra rα=  1r r→ −  
3 3 Pa rk=  1p p→ +  
4 4 Pa pα=  1p p→ −  
5 ( )5 1ona k d= −  1d d→ +  ( 0 1→ ) 

6 6 offa dk=  1d d→ −  (1 0→ ) 
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Protein-level distribution:  
 
In order to find the time-dependent distribution of the protein levels ( )p t  we solved 
analytically for higher moments (up to moment 6n = ). We find asymptotically (i.e. 
for times longer than 1/ Rα , 1/ onk , and 1/ offk ) that the behavior of moments 
corresponds to that of the negative binomial and the Gamma distributions, as detailed 
in Tables S11 and S12. Note that it does not matter if we take into account the 
activation-inactivation process or not - the Gamma distribution fits the stochastic 
model for both cases, with the difference being captured by the non-Poissonian 
parameter b .  
 

Table S11: Behavior of moments for the Poisson distribution, the Negative binomial 
distribution, the Gamma distribution, and the Log-normal distribution. Each of the 
first three distributions ( )P x  is defined by two parameters: the mean x  and the 

parameter b . In the Negative-binomial distribution b  corresponds to the deviation 
from Poisson, i.e., for 0b =  the distribution converges back to Poisson. For 1b�  the 
Negative binomial and the Gamma distributions are alike.  

 
n  Poisson Negative Binomial 
0 x  x  
1 ( )1x x

x
x
−

=  
( )1x x

x b
x
−

= +  

2 ( )( )
( )
1 2

1
x x x

x
x x
− −

=
−

 
( )( )

( )
1 2

2
1

x x x
x b

x x
− −

= +
−

 

…   
n  ( ) ( )( )

( ) ( )
1 ... 1

1 ... 1
x x x n x n

x
x x x n
− ⋅ ⋅ − + −

=
− ⋅ ⋅ − +

( ) ( )( )
( ) ( )
1 ... 1

1 ... 1
x x x n x n

x n b
x x x n
− ⋅ ⋅ − + −

= + ⋅
− ⋅ ⋅ − +

   
n  Gamma Log-normal 
0 x  x  
1 2x

x b
x

= +  
2

2x
x e

x
σ= ⋅  

2 3

2
2

x
x b

x
= +  

2
3

2
2

x
x e

x
σ= ⋅  

…   
n  1n

n

x
x n b

x

+

= + ⋅  
2

1n
n

n

x
x e

x
σ

+

= ⋅  
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Table S12: A comparison between the Poisson, Negative binomial, Gamma, and the 
Log-normal distributions1.  

 
 Poisson Negative Binomial 

Distribution 
( )

!

x
x x

P x e
x

−=  ( ) ( )
( ) ( )| , 1

!
xrr x

P x r p p p
x r
Γ +

= −
Γ

 

Mean x  x  1 pr
p
−  

Parameter b  0 1 p
p
−  

   
 Gamma Log-normal 

Distribution ( ) ( )
1 /1| , a x b

aP x a b x e
b a

− −=
Γ

 ( ) ( )2 2ln / 21| ,
2

xP x e
x

μ σμ σ
σ π

− −=  

Mean x  ab  2 / 2eμ σ+  
Parameter b  b  - 
 

                                                 
1 In bacteria the distribution was found to be Negative binomial when the 

lifetimes of the mRNA were taken to be much shorter than those of the 
protein / 1P Rη α α= �  (This is usually the case, as bacterial protein are 
considered stable and their lifetimes are assumed to be roughly 1 cell cycle). 
The parameters of the distribution have a simple physical meaning: 

/P Rb k α=  is the burst size, or the number of proteins produced by a single 
mRNA molecule during its short lifetime, and /R Pa k α=  is the number of 
bursts per cell cycle. 
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Distribution of onset-times:  

 
Eukaryotic genes are assumed to switch between active (open DNA) and inactive 
states (closed DNA) at rates onk  and offk . Transcription of mRNA occurs only when 
the cell is in open state. Cells that are initially in closed state produce no protein until 
they switch to open state for the first time.  

 

The probability that a cell which is initially closed will not open at all until time 0t  
(from the beginning of the cell cycle) decays exponentially with time, i.e. 
( ) ( )0 0~ exp onP t k t− . We define the "onset time" for the expression of a gene to be the 

duration of time that has elapsed from the initiation of the stochastic process until the 
expressed protein level has exceeded a certain small threshold. Thus, the onset times 

0t  for gene expression in a population of cells are exponentially distributed, with the 
tail of the distribution decaying as ( ) ( )onset 0~ exp onP t k t− . This result is demonstrated 
in Figure S13. 

 
If the telegraph process is initially in equilibrium, than a fraction ( )1 /on on offP k k k= +  

of the cells are initially in open state, and a fraction ( )0 /off on offP k k k= +  are in close 
state. Thus the histogram of onset-times for such a case is composed of a peak at 

0 0t =  (whose underlying surface is 1P ) followed by an  exponentially decaying tail 
(whose underlying surface is 0P ). 
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Figure S13: Stochastic simulation for a population of cells expressing a protein with 
short mRNA lifetime (such as YB1). Simulation parameters are: 1offk = , 0.5onk = , 

20Rk = , 0.7Rα = , 1Pk =  where the rates are taken in units of events/hour. The onset-
times are exponentially distributed as ( ) ( )onset 0~ exp onP t k t− . We assume that the 
telegraph process is in equilibrium throughout the simulation. Note that the 
exponential decay of the onset times histogram depends only on onk  and not on offk . 
However, if 0offk ≈  the surface underneath the exponential tail is 

( )0 / 0off on offP k k k= + ≈ , and it will disappear. Similar results are achieved for 
simulations of proteins with stable mRNA (such as PRC1). 

 
We can thus use the histogram of onset times to extract the gene activation rate onk  
from experimental data. This method is relatively robust to changes in the threshold 
used to calculate the onset time 0t , as demontrated in Figure S14. Furthermore, using 
the cumulative data function (CDF) gives an estimation that is more robust when the 
number of cells is small (the PDF is sensitive to empty bins that arise when only 150-
200 cells are taken). 

Noise 
strength and 
CV 

Data and 
mean 

Histogram of 
start times (log 
& normal scale)
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Figure S14: The gene activation rate onk  can be robustly extracted from the 
histogram of onset times 0t  in the above simulation. Shown are extracted values of 

onk  for different thresholds used to calculate 0t . The extracted value of onk   is 
1.88±0.44 hr-1 for YB1 and 0.68±0.24 hr-1 for PRC1.  For thresholds values up to 5% 
of the maximal expression level (i.e., the maximal protein level during the entire cell 
cycle). 
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Estimation of translation rates: 
 
Assume a gene of length L  (in base-pairs) from which a transcript of length L  is 
transcribed. It is known that a single ribosome crawls along the mRNA at a rate2 of 

20AA/sec=60bp/secv =  (Young and Bremer 1976). Thus, a single ribosome translates 

a new protein every L
v

τ =  seconds. We assume that the ribosomes bind to the mRNA 

at saturating amounts at a varying density3 of  4 23 10 3 10 Ribosomes/bpρ − −= ⋅ − ⋅  
(Arava, Wang et al. 2003) according to the strength of the ribosome-binding site. 
Thus, the rate of new proteins being produced is multiplied by the number of 
ribosomes per transcript: R Lρ= . The number of proteins produced per mRNA 
molecule per second is: 
 

 
( / )P

R Lk v
L v
ρ ρ

τ
= = = , (S 11) 

which gives Pk  roughly between 1.8  and 0.018  proteins per second, or 
60 6000Proteins/hrPk ≈ − . For PRC1, whose transcript length is roughly 1800bp it has 

been shown in Yeast to have approximately 10 ribosomes associated on it 
(http://genome-www.stanford.edu/yeast_translation/). Thus 1/180 Ribosomes/bpρ =  
and 11/ 3sec 1200proteins/hrPk −≈ = .  
  
 
 
 

                                                 
2 This rate, also refered to as the "elongation rate", was measured for bacteria and is 

assumed to be on the same order of magnitude for yeast and mammalian cells 
Young, R. and H. Bremer (1976). "Polypeptide-chain-elongation rate in Escherichia 
coli B/r as a function of growth rate." Biochem J 160(2): 185-94.. 

3 Usually ribosome density is taken to be 0.03 to 3 ribosomes per 100 base-pairs. The 
maximal density corresponds to roughly 30 base-pairs per ribosome. Ribosome 
density is a roughly decreasing function of the length of the gene Arava, Y., Y. 
Wang, et al. (2003). "Genome-wide analysis of mRNA translation profiles in 
Saccharomyces cerevisiae." Proc Natl Acad Sci U S A 100(7): 3889-94.. 
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Extraction of biochemical parameters - fitting 
 
We have 4 (or 5) biochemical parameters: dα , dk , Rk , Pk  (and Rα ). Note αp is 
assumed to be 0. 

• We extract dk  from start times histogram. 
• We extract Rα  from the mean protein level (and independently, from 

inhibition experiments). 
• We are left with: dα , Rk , Pk  

  
 
YB1: 
We get: 1.88dk =  from the start times histograms. 
mRNA lifetime: 0.75Rα ≈   
Regarding the other parameters, for any value of dα  we get different values of Rk , Pk  
(and Rα ). 
 
 

 
 
Figure S15: Example of fit (blue line) to total protein, noise strength (NS) and to the 
coefficient of variance (CV) of experimental data of YB1. 
 
 
 
 
 
 
 

 

0 2 4 6 8
0

20000

40000

60000

0 2 4 6 8
0

1000

2000

3000

4000

0 2 4 6 8
0

0.1
0.2
0.3
0.4
0.5
0.6

Time (hours) Time (hours) Time (hours) 

Total protein NS CV 



 - 28 -      

 
 
 

 
 
 
 
 
 
Figure S16: For any value of dα  we get different values of Rk , Pk (a) and Rα  (b). 
 

0.5 1 1.5 2
ad

0.6

0.65

0.7

0.75

0.8

a R

αd 
α

r

(b) 

0.5 1 1.5 2
ad

500

1000

1500

2000

2500

k P
H

neerg
L

0

40

80

120

160

200

240

280

320

360

400

k R
H

eulb
L

αd 

K
p  (green)

 

K
r  (blue)

 
(a) 



 - 29 -      

 
 
Figure S17: Error "landscape" It can be seen that there is not enough data to 
specify dα , Rk , Pk . All values of dα  (in the range [ ]0, dk ) give approximately the 
same low fit-error to the experimental data. The "potential well" is quite shallow, as 
can be seen by the bootstrap (i.e. any minima seen inside the well is not robust to 
addition/deletion of single cells). 
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PRC1: 
 
We find: 0.66dk =  from the start times histograms. 
Regarding the other parameters, for any value of dα  we get different values of Rk , Pk  
(and Rα ). 
 

 
Figure S18: Example of fit (blue line) to total protein, noise strength (NS) and to the 
coefficient of variance (CV) of experimental data of YB1. 
 
 
 
 
 

 
Figure S19: For any value of dα  we get different values of Rk , Pk .  
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Figure S20: Error "landscape" It can be seen that there is not enough data to 
specify dα , Rk , Pk . All values of dα  (in the range [ ]0, dk ) give approximately the 
same low fit-error to the experimental data. The "potential well" is quite shallow, as 
can be seen by the bootstrap (i.e. any minima seen inside the well is not robust to 
addition/deletion of single cells). 
 
However, all values of Rk , Pk  inside the "potential well" are biochemically feasible. 
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Cell-to-cell variability can stem from either extrinsic or intrinsic sources 
 
In order to model the cell-to-cell variability two different models may be suggested. 
The first model assumes that the observed variability has 'extrinsic' origins, meaning 
that each cell has different rate constants which are conserved for a relatively long 
time period. Such differences were suggested to rise for example from amounts of 
transcriptional and translational machinery that differ between cells (Elowitz, Levine 
et al. 2002; Pedraza and van Oudenaarden 2005). The second model assumes that the 
observed variability arises from stochastic processes due to low copy molecular 
interactions and has been termed 'intrinsic'.  
In order to try and characterize the sources of variability in protein accumulation of 
PRC1 and YB1, we ran intrinsic and extrinsic simulations of the process. Intrinsic 
simulations were run using the Gillespie algorithm (Gillespie 1977) taking into 
account DNA opening rate - computed from onset times, and protein and mRNA half 
lives – computed from the transcription inhibition experiment (as previously 
described in the supplementary text). Extrinsic simulations were run by fitting linear 
and quadratic curves to each single cell profile of YB1 and PRC1 respectively, and 
adding the fit-to-experiment difference as experimental noise. 
We find that all measured parameters of the experiment on PRC1 and YB1, including, 
mean, noise strength, auto correlation and the ergodicity metric all can be reproduced 
(within the experimental error limit) using feasible biochemical parameters in both 
extrinsic and intrinsic simulations (see Figures S21-S23).  
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Figure S21: Mixing of cells as observed from experimental data vs. mixing as result of 
extrinsic or intrinsic sources of cell-to-cell differences. Mixing occurs when a cell 
lineage, given enough time, reaches the different states found in a snapshot of a cell 
population. Mixing was measured using two approaches (detailed by Sigal et al. (Sigal, Milo 
et al. 2006)). The first is the auto-correlation function A(τ) of the protein levels (PRC1 at plot 
B and YB1 at plot D). The second, an ‘ergodicity’ metric, ranked the cells according to 
tagged protein fluorescence at the beginning of the movie, and followed the fraction of the 
total ranks that each cell traversed as a function of time (PRC1 at plot A and YB1 at plot C). 
All graphs (A-D) denote measurements of mixing between 3-13 hours following beginning of 
protein accumulation for PRC1 (A,B) and YB1 (C,D). In each graph, red line denotes 
average mixing measured in the experiment, brown line denotes mixing measured in 
simulation with extrinsic origins of noise and blue line denotes mixing measured in intrinsic 
simulation of a 3 stage molecular process as discussed in the text.  
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Figure S22: Mixing of cells as observed from experimental data vs. mixing as result of 
extrinsic or intrinsic sources of cell-to-cell differences. Mixing is measured as detailed 
in figure S20. All graphs (A-D) denote distributions of mixing after 13 hours of protein 
accumulation. Mixing measured from extrinsic simulations is brown and from intrinsic 
simulations is blue. Red circle denotes experimental data A,C) 'Ergodicity' metric measured 
for PRC1 and YB1 respectively. B,D) Auto correlation measured for PRC1 and YB1 
respectively. 
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Figure S23: Gamma distribution consists of a scale parameter a, and shape 
parameter b, which are both related to the mean, μ, and standard deviation, σ, by  
α=μ2/σ2 and b=σ2/μ. Bold blue and red circles denote a,b measurements for YB1 and 
PRC1 respectively for the first 12 hours of protein accumulation. Cyan and orange 
diamonds denote a,b measurements from intrinsic simulations that best fit the data.
Gray and pink squares denote a,b measurements from extrinsic simulations based on 
parameters fitted from the experimental data. Error bars denote standard errors.
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Supporting movies 
 
Supporting Movie 1:  
Time-lapse movie of transmitted light images of the clone with YFP CD-tagged 
PRC1. Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 
frame per 20 minutes). 
 
Supporting Movie 2: 
Time-lapse movie of yellow fluorescence images of the clone with YFP CD-tagged 
PRC1. Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 
frame per 20 minutes). 
 
Supporting Movie 3: 
Time-lapse movie of yellow fluorescence images overlaid on transmitted light images 
of the clone with YFP CD-tagged PRC1. Movie duration is 92 hours, each frame is 
played for 0.1 second (time-lapse: 1 frame per 20 minutes). 
 
Supporting Movie 4:  
Time-lapse movie of transmitted light images of the clone with YFP CD-tagged YB1. 
Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 frame 
per 20 minutes). 
 
Supporting Movie 5: 
Time-lapse movie of yellow fluorescence images of the clone with YFP CD-tagged 
YB1. Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 
frame per 20 minutes). 
 
Supporting Movie 6: 
Time-lapse movie of yellow fluorescence images overlaid on transmitted light images 
of the clone with YFP CD-tagged YB1. Movie duration is 92 hours, each frame is 
played for 0.1 second (time-lapse: 1 frame per 20 minutes). 
 
Supporting Movie 7:  
Time-lapse movie of transmitted light images of the clone with YFP CD-tagged 
ANLN. Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 
frame per 20 minutes). 
 
Supporting Movie 8: 
Time-lapse movie of yellow fluorescence images of the clone with YFP CD-tagged 
ANLN. Movie duration is 92 hours, each frame is played for 0.1 second (time-lapse: 1 
frame per 20 minutes). 
 
Supporting Movie 9: 
Time-lapse movie of yellow fluorescence images overlaid on transmitted light images 
of the clone with YFP CD-tagged ANLN. Movie duration is 92 hours, each frame is 
played for 0.1 second (time-lapse: 1 frame per 20 minutes). 
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