Appendix S1 
Information Theory

Introduction

In this section the central information-theoretic notions used in this paper are briefly introduced. For a detailed introduction to information theory [69] consult, for example, [70].

A random variable can assume various values with various probabilities. In this paper exclusively discrete random variables are considered; where continuous state spaces appear originally, they are suitably quantized before being used as random variables. 

Denote random variables with uppercase letters, e.g.,

[image: image1.wmf]X

, their sets of values with upright letters, e.g.,, and their values with lowercase letters, e.g., x. Denote composite random variables by listing their elements inside parenthesis, e.g.,
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with values
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 from the set 
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. By abuse of notation we denote
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, the probability that X assumes the value x, by
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. Similarly, the joint probability of X and Y is denoted by
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 and the conditional probability of X given Y by
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Entropies, Mutual Information, Channel Capacity

The entropy of X, denoted by H(X), is defined as a measure of the uncertainty of the probability distribution of X: 
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Entropy as well all other information-theoretic measures used in this paper are measured in bits. Note that all of the information-theoretic measures presented in this section are non-negative.

The conditional entropy of X given Y, denoted 
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, is defined as uncertainty of X knowing Y weighted by the probability of Y: 
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The mutual information between X and Y, denoted
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, is defined as the average reduction in the uncertainty of X given Y: 
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It is symmetric in X and Y.

Channel capacity of a communication channel: consider a channel 
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from a variable X to a variable Y, characterized by the fixed given conditional
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. If a distribution 
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 on X is given, consider
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, the mutual information between X and Y. The channel capacity of that channel is the maximum of this mutual information over all possible input distributions 
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 on X, and limits the amount of information that can be reliably transmitted through the channel: 
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Consult also App. S3 for a more complete formalism of the causal aspects of a channel.[image: image22][image: image23][image: image24]
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