1

Logistic regression analyses

Coding in two-factor models

A series of logistic regression models were fitted to the data in order to find a parsimonious model for the joint effects of each pair of loci. Models allowing for additive effects (ADD1, ADD2, and ADD-BOTH), models incorporating dominance effects (DOM1, DOM2, and DOM-BOTH), and three interaction models (ADD-INT, ADD-DOM, and DOM-INT) were fitted. In the additive models the genotypes, RR, RN, and NN (or PP, PN, and NN), are coded 1, 0, and 1, respectively; where R denotes the assumed risk allele at CFH or LOC387715, P the assumed protective allele at C2, and N the assumed normal allele. The dominance models incorporate a variable to the additive models coded as 0.5 for RR (or PP) and NN and 0.5 for RN (or PN). We let x_1 and x_2 denote the genotype variables in the additive models, and z_1 and z_2 the additional variables incorporated into the dominance models. Then the ADD1, ADD2, and ADD-BOTH models include terms (x_1) , (x_2) , and $(x_1$ and $x_2)$, respectively, and the DOM1, DOM2, DOM-BOTH models incorporate terms (z_1) , (z_2) , and $(z_1$ and $z_2)$ to the ADD1, ADD2, and ADD-BOTH models, respectively. Three further interaction models are fitted: ADD-INT incorporates the product term (x_1x_2) to the ADD-BOTH model, ADD-DOM incorporates the product terms (x_1x_2) x1z2, and z1x2), and DOM-INT incorporates the product terms $(x_1x_2, x_1z_2, z_1x_2, z_1$ and z_1x_2) to the DOM-BOTH model.

Coding in three-factor models

Since, for each pair of loci, the two-factor analyses implicated additive models as the most parsimonious and to keep the number of parameters as small as possible we only fit three-factor additive models without interaction. The models are ADD1, ADD2, ADD3, ADD12, ADD13, ADD23, and ADD123 and include terms (x_1) , (x_2) , (x_3) ,

 $(x_1 \text{ and } x_2)$, $(x_1 \text{ and } x_3)$, $(x_2 \text{ and } x_3)$, and $(x_1, x_2, \text{ and } x_3)$, respectively, where x_1 , x_2 , and x_3 , are coded as in the additive two-factor models above.