Logistic regression analyses

Coding in two-factor models

A series of logistic regression models were fitted to the data in order to find a parsimonious model for the joint effects of each pair of loci. Models allowing for additive effects (ADD1, ADD2, and ADD-BOTH), models incorporating dominance effects (DOM1, DOM2, and DOM-BOTH), and three interaction models (ADD-INT, ADDDOM, and DOM-INT) were fitted. In the additive models the genotypes, $R R, R N$, and $N N$ (or $P P, P N$, and $N N$), are coded 1, 0 , and 1, respectively; where R denotes the assumed risk allele at $C F H$ or $L O C 387715, P$ the assumed protective allele at C2, and N the assumed normal allele. The dominance models incorporate a variable to the additive models coded as 0.5 for $R R$ (or $P P$) and $N N$ and 0.5 for $R N$ (or $P N)$. We let x_{1} and x_{2} denote the genotype variables in the additive models, and z_{1} and z_{2} the additional variables incorporated into the dominance models. Then the ADD1, ADD2, and ADD-BOTH models include terms $\left(x_{1}\right),\left(x_{2}\right)$, and $\left(x_{1}\right.$ and $\left.x_{2}\right)$, respectively, and the DOM1, DOM2, DOM-BOTH models incorporate terms $\left(z_{1}\right)$, $\left(z_{2}\right)$, and (z_{1} and z_{2}) to the ADD1, ADD2, and ADD-BOTH models, respectively. Three further interaction models are fitted: ADD-INT incorporates the product term $\left(x_{1} x_{2}\right)$ to the ADD-BOTH model, ADD-DOM incorporates the product terms ($x 1 x 2$, $x 1 z 2$, and $z 1 x 2$), and DOM-INT incorporates the product terms $\left(x_{1} x_{2}, x_{1} z_{2}, z_{1} x_{2}\right.$, and $z_{1} x_{2}$) to the DOM-BOTH model.

Coding in three-factor models

Since, for each pair of loci, the two-factor analyses implicated additive models as the most parsimonious and to keep the number of parameters as small as possible we only fit three-factor additive models without interaction. The models are ADD1, ADD2, ADD3, ADD12, ADD13, ADD23, and ADD123 and include terms $\left(x_{1}\right),\left(x_{2}\right),\left(x_{3}\right)$,
$\left(x_{1}\right.$ and $\left.x_{2}\right),\left(x_{1}\right.$ and $\left.x_{3}\right),\left(x_{2}\right.$ and $\left.x_{3}\right)$, and $\left(x_{1}, x_{2}\right.$, and $\left.x_{3}\right)$, respectively, where x_{1}, x_{2}, and x_{3}, are coded as in the additive two-factor models above.

