
Supporting Text S1 

Tryptophan manipulation 

We found that the concentration of total plasma tryptophan decreased by 92.5% (mean) 

under the depletion condition, six hours after treatment. In the previous study using the 

same amino acid mixture, the concentrations of total plasma tryptophan decreased by 

82-94% (mean, 89%; six hours after treatment) and the concentration of cerebrospinal fluid 

(CFS) 5-HIAA, reflecting central serotonin levels, decreased by 24-40% (mean, 31%; 8.5 

hours after treatment) [1]. In the tryptophan loading condition, we found that the 

concentration of total plasma tryptophan increased to about 12 times higher than baseline 

by six hours after treatment. In a previous study of tryptophan loading, the concentration of 

total plasma tryptophan quintupled (8 hours after treatment) and the concentration of CFS 

5-HIAA increased significantly (8 hours after treatment) [2]. Based on these previous 

studies, we judge that our tryptophan depletion and loading treatments resulted in 

significant changes in the subjects’ central serotonin levels. 

 

Additional behavioral data analyses 

A repeated-measures ANOVA showed no significant effects of tryptophan levels on the 

number of large reward choice (F(2, 22) = 0.053, P = 0.948; Fig. S1) or on other measures 

such as reaction time (F(2, 22) = 0.586, P = 0.565), total number of button presses (F(2, 22) = 

2.79, P = 0.083), number of trials in which subjects reversed their choices (F(2, 22) = 1.33, P 

= 0.286), and total amount of rewards (F(2, 22) = 0.551, P = 0.584). 
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Additional data analysis based on computational model of delay discounting 

Exponential discounting of reward R at delay D, 

V = R γD,                                       (S1) 

is commonly used in artificial intelligence and economics because it enables an on-line 

learning algorithm and optimality under a constant rate of reward cancellation [3]. On the 

other hand, the hyperbolic discounting model, 

V = R / (1 + kD),                                 (S2) 

has often been used to explain animal choice behaviors [4,5].   

A subject’s choice behaviors can be characterized by plotting his/her small and large 

reward choices in the space spanned by the delay to small reward Ds and the delay to the large 

reward Dl [6]. While the exponential model predicts the slope of the “indifference line” equal 

to one (from Rl γDl = Rs γDs, we have Dl = Ds+ logγ(Rs/Rl)), the hyperbolic model predicts the 

slope equal to Rl/Rs = 4 (from Rl / (1 + kDl) = Rs / (1 + kDs)). 

Based on each subject’s small and large reward choices at different points on Ds-Dl 

space, we performed logistic regression analyses of the probability Pl of a large reward 

(yellow) choice based on the following model: 

Pl = 1/(1+exp[ - (βl Dl + βs Ds + β0)]). 

Each subject’s choice indifference line was determined by setting Pl = 0.5, (i.e., a line given 

by Dl = - βs/βl Ds - β0/βl) (see Fig. S1). 
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 We found that the slopes of indifference lines βs/βl of the subjects were intermediate 

between hyperbolic (slope = 4) and exponential model (slope = 1) predictions (trp-: 2.82 ± 

2.63 (mean ± s.d.), control: 2.49 ± 1.91, trp+: 2.72 ± 2.17). We did not find a significant effect 

of tryptophan levels on the slopes of the indifference lines (F(2,22) = 0.96, P = 0.909). Subject 

discount factor γ can be estimated from the intercept of the indifference line in the Ds-Dl 

space given by log(Rs/Rl)/logγ = β0/βl. We did not find a significant effect of tryptophan 

levels on the intercept (F(2,22) = 1.10, P = 0.350).  

 

A note on striatal activities correlated with reward prediction and prediction error 

In this study, we found that activities in the striatum correlated with reward prediction signals 

estimated by a computational model. This result is consistent with previous neural recording 

studies reporting reward expectation-related activities in the striatum [7-10]. However, a 

number of previous functional brain imaging studies have shown striatal activities to be 

correlated with reward prediction error [11-14]. The striatum receives both cortical input, 

representing sensory cues that allow reward prediction, and dopaminergic input from the 

substantia nigra, representing the reward prediction error signal for learning [15]. Thus, in an 

fMRI experiment, both reward prediction and prediction error signals can be detected as 

BOLD signals. In this study we found a correlation between BOLD signals and reward 

prediction, because the reward prediction error due to the uncertainty of the number of steps 

until receiving the reward was relatively small, compared with the steady build-up of reward 

expectation.  

 3 



References  

1. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, et al. (1998) Tryptophan 

depletion during continuous CSF sampling in healthy human subjects. 

Neuropsychopharmacology 19: 26-35. 

2. Young SN, Gauthier S (1981) Effect of tryptophan administration on tryptophan, 

5-hydroxyindoleacetic acid and indoleacetic acid in human lumbar and cisternal 

cerebrospinal fluid. J Neurol Neurosurg Psychiatry 44: 323-328. 

3. Sutton RS, Barto AG (1998) Reinforcement Learning. 

4. Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse 

control. Psychol Bull 82: 463-496. 

5. Mazur JE (2001) Hyperbolic value addition and general models of animal choice. 

Psychol Rev 108: 96-112. 

6. Mobini S, Chiang TJ, Al-Ruwaitea AS, Ho MY, Bradshaw CM, et al. (2000) Effect of 

central 5-hydroxytryptamine depletion on inter-temporal choice: a quantitative 

analysis. Psychopharmacology (Berl) 149: 313-318. 

7. Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive 

signals in the basal ganglia. Nat Neurosci 1: 411-416. 

8. Shidara M, Aigner TG, Richmond BJ (1998) Neuronal signals in the monkey ventral 

striatum related to progress through a predictable series of trials. J Neurosci 18: 

2613-2625. 

9. Tremblay L, Hollerman JR, Schultz W (1998) Modifications of reward 

expectation-related neuronal activity during learning in primate striatum. J 

 4 



Neurophysiol 80: 964-977. 

10. Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific 

reward values in the striatum. Science 310: 1337-1340. 

11. McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive 

learning task activate human striatum. Neuron 38: 339-346. 

12. O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference 

models and reward-related learning in the human brain. Neuron 38: 329-337. 

13. Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK, et al. (2004) Temporal 

difference models describe higher-order learning in humans. Nature 429: 664-667. 

14. Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, et al. (2004) Prediction of 

immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat 

Neurosci 7: 887-893. 

15. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. 

Science 275: 1593-1599. 

 

 5 


