
Supplemental information S2 Text 
 
Description of effect size calculations, detailed data analysis, and computer code used for the 
analyses.  
 
Effect size calculations 
Because we collected data from very different types of variables, conventional calculation of 
effect size (ES), e.g.,  natural log of the ratio treatment/control, would have required data 
transformations that could have impacted the results. For example, some of the data points were 
zero and some included negative values for only one of the responses which would have 
produced an ES with erroneous signs (positive when the actual effect was negative). Instead, we 
used a calculation of the effect size that does not required data transformation to deal with those 
issues and that always produce an ES with the right sign. Furthermore, these values are still 
highly correlated with the natural log ratio (Sorte et al., 2012; Ibáñez et al., 2014). Effect size 
was estimated as: 

𝐸𝑆 =
(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑣𝑎𝑙𝑢𝑒	(𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

 
This is also a relatively conservative estimate of ES, values varied between -2 and 2, while 
calculations of the natural log ratio varied between -5.2 and 6.4. The correlation between our ES 
estimates and those using the natural log ratio was 0.99 (based on 591 observations with ES 
values between -1.5 and 1.5). To estimate the mean and variance around the effect size we run 
simulations (equivalent to bootstrapping) using the reported mean and SD or SE values of the 
response metrics, we also included sample size in the calculations to give more weight to 
observations with larger sample sizes (Gurevitch & Hedges 2001). 
 
Fig.SM3. Graphical representation of ES (x axis) and their associated variability (SD, y – axis). 
Variability estimates account for reported sample size. 
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Data analysis 
 
In order to compare natural and managed systems and to differentiate between conditions that 
were expected to improve resilience (increases in moisture, fertility or diversity, and biomass 
reduction treatments) versus those that were expected to reduce it (increase in disturbance 
severity and occurrence of a second disturbance), we analyzed the calculated values of ES, mean 
(ES) and SD (s) using the following hierarchical approach. For each observation i, ESi was 
estimated for each system (natural or managed), context of recovery (moisture, fertility, 
diversity, biomass reduction, severity, second disturbance) and response metric (abundance, 
change, diversity, growth, reproduction, resilience). We also included study random effects, 
SRE.   

Likelihood: 𝐸𝑆7~𝑁𝑜𝑟𝑚𝑎𝑙(𝐸𝑆𝑚7,𝜎7
;) 

Process model: 𝐸𝑆𝑚7 = 𝐸𝑆1=>=?@A(7),BCD?@E?(7),F@=GCD=@(7) + 𝑆𝑅𝐸7  
Parameter ES1 was then estimated for each combination of system and context of recovery, 

𝐸𝑆1=>=?@A,BCD?@E?,F@=GCD=@~𝑁𝑜𝑟𝑚𝑎𝑙J𝐸𝑆2=>=?@A,BCDL7?7CD, 𝜎=>=?@A,BCDL7?7CDM.  
We carried out additional analysis to determine what might have affected the variability we 

observed in ES. From the six contexts of recovery, we had enough data (more than 100 
observations) to analyze three of them: moisture gradients, biomass reduction treatments and 
disturbance severity.  

We analyzed the response to moisture gradients (data were only available for natural 
systems) as a function of the moisture levels of the study’s region. The purpose of this approach 
was to understand if the effects of moisture gradients on resilience depended on the climatic 
conditions (moisture regime) of the region. For example, moisture gradients may play a more 
important role on resilience in dry regions than in wet areas. For that we calculated a variant of 
the De Martonne humidity-aridity index (DMI) that includes temperature and precipitation, DMI: 
annual precipitation (cm)/July average temperature (°C) (January for southern hemisphere 
locations) (De Martonne 1926). We also included study random effects (SRE) and years since 
disturbance (YSD) as the magnitude in ES may vary over time. Since data exploration indicated 
that responses might vary by biome, parameters were estimated for each biome represented in 
the data (boreal, temperate, Mediterranean and tropical). DMI and YSD were standardized for 
the analysis.  

Likelihood: 𝐸𝑆7~𝑁𝑜𝑟𝑚𝑎𝑙(𝐸𝑆𝑚7,𝜎7
;) 

Process model: 𝐸𝑆𝑚7 = 𝛽1O7CA@(7) + 𝛽2O7CA@(7)𝐷𝑀𝐼7 + 𝛽3O7CA@(7)𝑌𝑆𝐷7 + 𝑆𝑅𝐸𝛽7 
To test whether the type of disturbance affected the outcome of post-disturbance biomass 

reduction practices we analyzed the data available (only from managed systems) as a function of 
disturbance type and study random effects (SRE).  

Likelihood: 𝐸𝑆7~𝑁𝑜𝑟𝑚𝑎𝑙(𝐸𝑆𝑚7,𝜎7
;) 

Process model: 𝐸𝑆𝑚7 = 𝛼L7=?VFOWDB@(7) + 𝑆𝑅𝐸𝛼7 



Finally, we analyzed whether severity of the disturbance affected vegetation responses. We 
analyzed the available data (for natural and managed systems) and estimated ES as a function of 
the treatment size (TS; a measurement of severity strength). TS was estimated using the same 
approach as ES (𝑇𝑆 = (?F@W?A@D?YBCD?FCZ)

WO=(W[@FW\@)
). Since severity seemed to affect vegetation strata 

differently (known from our exploratory data analysis), we estimated the effect of TS on ES as a 
function of vegetation stratum (only ‘all strata’, ‘adult trees’ and ‘seedlings’ categories had 
enough data, others had much fewer data points, < 6). Study random effects were also added and 
centered to aid with the convergence of parameters.  

Likelihood: 𝐸𝑆7~𝑁𝑜𝑟𝑚𝑎𝑙(𝐸𝑆𝑚7,𝜎7
;) 

Process model: 𝐸𝑆𝑚7 = 𝛾[@\@?W?7CD(7)𝑇𝑆7 + (𝑆𝑅𝐸𝛾7 − 𝑚𝑒𝑎𝑛𝑆𝑅𝐸𝛾) 
Parameters for all analyses were estimated from non-informative prior distributions:  

𝐸𝑆2=>=?@A,BCD?@E?, 𝛼L7=?VFOWDB@ , 𝛽O7CA@,𝛾[@\@?W?7CD~𝑁𝑜𝑟𝑚𝑎𝑙(0,10000) 
𝑆𝑅𝐸 ∗7 ~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎`ab∗; )	and 𝜎`ab∗; ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100) 

Analyses were run in OpenBUGS (Thomas et al. 2006), with three chains, for 20000 
iterations. Only the last 10000 iterations, after convergence, were used and thinned to estimate 
parameter posterior means, variances, and covariances. 
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Code in OpenBUGS-Effect size calculations: 
 
model{ 
 
for(i in 1:726){ 
 
ct[i]<-Nc[i]/pow(sdc[i],2) #precision control response, correcting for sample size 
tt[i]<-Nt[i]/pow(sdt[i],2) #precision treatment response, correcting for sample size 
 
C[i]~dnorm(meanc[i],ct[i]) 
T[i]~dnorm(meant[i],tt[i]) 
 
m[i]<-abs((T[i]+C[i])/2) 
ES[i]<-(T[i]-C[i])/m[i])) 
} 
 
}#end model 
 
Code in OpenBUGS-Effect size hierarchical analysis: 
 
model{ 
 
for(i in 1:726){ 
ESmean[i]~dnorm(ESm[i],EStau[i])   
ESm[i]<-ES1[Driver[i],treat[i],res[i]]+SRE[study[i],res[i]] 
} 



 
#priors 
  for(i in 1:2){ #system 
     for(j in 1:7){ #condition 
           ES2[i,j]~dnorm(0,0.1) 
           T2[i,j]<-1/var2[i,j] 
            var2[i,j]~dunif(0,10) 
 
        for(k in 1:6){#respose 
          ES1[i,j,k]~dnorm(ES2[i,j],T2[i,j])  
}}} 
    
for(r in 1:6){ 
for(i in 1:157){ SRE[i,r]~dnorm(0,T) }} 
T<-1/V 
V~dunif(0,100) 
 
} #end model 
 
 
Code in OpenBUGS-Effects of Moisture gradients: 
 
model{ 
#missing values 
DMI[36]~dunif(0.86,8.74) 
 
for(i in 1:112){ 
 
DMIS[i]<-(DMI[i]-mean(DMI[]))/sd(DMI[]) 
yearsS[i]<-(years[i]-mean(years[]))/sd(years[]) 
 
ESmean[i]~dnorm(ESm[i],EStau[i]) 
ESm[i]<-a[Biome[i]]+b[Biome[i]]*DMIS[i]+c[Biome[i]]*yearsS[i]+SRE[study[i]] 
 
} 
 
#for(r in 1:6){ 
for(i in 1:151){ SRE[i]~dnorm(0,T) }  #} 
T<-1/V 
V~dunif(0,10000) 
 
for(d in 1:6){ 
a[d]~dnorm(0,0.0001)} 
for(i in 1:6){b[i]~dnorm(0,0.0001) 
c[i]~dnorm(0,0.0001) 
} 
 
}#end model 
 
 
Code in OpenBUGS-Effects of Biomass reduction treatments: 
 
model{ 
 
for(i in 1:193){ 



 
ESmean[i]~dnorm(ESm[i],EStau[i]) 
ESm[i]<-a[Dist[i]]+SRE[study[i],res[i]] 
 
} 
 
for(r in 1:6){ 
for(i in 2:157){ SRE[i,r]~dnorm(0,T) }  } 
T<-1/V 
V~dunif(0,10000) 
 
for(d in 1:8){ 
a[d]~dnorm(0,0.0001)} 
 
}#end model 
 
 
Code in OpenBUGS-Effects of disturbance severity: 
 
model{ 
 
for(i in 1:204){ 
 
ESmean[i]~dnorm(ESm[i],EStau[i]) 
ESm[i]<-b[veg[i]]*TS[i]+(SRE[study[i]]-A) 
 
} 
 
for(i in 3:155){ SRE[i]~dnorm(A,T) }  
 
T<-1/V 
V~dunif(0,10000) 
A~dnorm(0,0.0001) 
 
for(i in 1:14){ 
b[i]~dnorm(0,0.0001) 
} 
 
} 


