Abbreviations for the nomenclature of menthol metabolites referred to by the present study and
a list of 102 compounds in this study grouped by molecular formula

| Group Position | 3 | 7 | 8 | 9 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Original form | 0 | e | e | e | e |  |
| Alkane | - | e | e | e | e |  |
| Alcohol | 0 | 0 | 0 | o | 0 |  |
| Aldehyde | y | $\underline{\text { V }}$ | - | $\underline{\text { V }}$ | y |  |
| Carboxylic acid | - | $\underline{\underline{x}}$ | - | $\underline{\underline{x}}$ | - |  |
| Dehydration | -4D for four-membered ring formation at positions 3 and 8 |  |  |  |  |  |
| Aldol reaction | -5 A for four-membered ring formation at positions 3 and 9 |  |  |  |  |  |
| Glucuronic acid | O | $\underline{\mathrm{O}}, \underline{\mathrm{X}}$ | - | $\underline{\mathrm{O}}, \underline{\mathrm{X}}, \underline{\underline{Y}}$ | - | 10 9 |
| Sulfate group | s | - | - | - |  |  |

- An underlined indicates that there are $R$ and $S$ stereoisomers due to the substitution.
- Substitution at position 9 leads to a new chiral center if it is not the same as 10.
- Substitution at position 10 is forced to have lower or the same oxidation state for the carbon atom when compared to position 9.
- Dashes are where substitution with the functional group at that respective position cannot occur

|  | formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ (molar mass 156.26 , total 1 compound)  <br> 1 oeeee <br> (in chair form) |  |
| :---: | :---: | :---: |
|  | formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$ (molar mass 172.26 , total 4 compounds) |  |
|  <br> 6 oooee | formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}$ (molar mass 188.26 , total 6 compounds) |  <br> 11 oeeoo |
|  | formula: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ (molar mass 170.25 , total 4 compounds) |  |


(mormula: $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$ (molar mass 184.23 , total 5 compounds)



Notes

- Compounds are highlighted in yellow when their RS designator changes from their parent compounds.
- G stands for a glucuronyl group:


