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Materials and Methods 

The core data for our analyses were previously published, and so details concerning 

population construction, plant growth, phenotyping, and SNP genotyping by Genotype-

by-Sequence (GBS) technology for both our teosinte and landrace populations can be 

found in Yang et al. [1].  Briefly, a population of 70 teosinte plants from the near the 

town of Palmar Chico in Balsas river drainage of Mexico and a population of 55 maize 

landrace (Tuxpeño) plants from a nearby location were sampled.  DNA from all 125 

plants was used for whole-genome-sequencing (WGS) (see below).  Of the 70 teosinte 

plants, 49 were used as parents and selfed and intermated to produce a total of 4,455 

teosinte progeny.  Similarly, of the 55 landrace plants, 40 were used as parents and 

selfed and intermated to produce a total of 4,398 maize landrace progeny.  The teosinte 

population has 49 selfed families with family size ranging from 3 to 95 progeny and 288 

outcross families with family size ranging from 1 to 75 progeny.  The maize landrace 

population has 34 selfed families with family size ranging from 1 to 125 progeny and 55 

outcross families with family size ranging from 6 to 141 progeny.  The parentage of 

progeny was determined using the GBS data of the parents and progeny.  

The teosinte and landrace progeny were grown in neighboring fields near Homestead, 

Florida over during two winter seasons (2013-14 and 2014-15).  Eighteen domestication 

traits were scored on both the teosinte and landrace progeny and these were the focus 

of the work of Yang et al. [1] (Table 1).  Some additional traits were scored in teosinte 

alone, seven of which are analyzed in this paper (S3 Table).  For GBS, a total of 34,899 

SNPs was scored for teosinte and 40,255 SNPs for maize landrace.  Yang et al. [1] 

estimated a variety of quantitative genetic parameters for these populations including: 

additive genetic variance, dominance genetic variance, phenotypic variance, genetic-by-

environmental variance, selection intensity, genetic correlation matrix, and genetic 

variance-covariance matrix.  All phenotype and genotype data from Yang et al. [1] are 

available at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820997116/-

/DCSupplemental and https://doi.org/10.6084/m9.figshare.7655588. 

In this paper, we added to this dataset by determining the WGS for all 125 teosinte 

and landrace parent plants.  We extracted a total of 18 million and 21 million SNPs from 
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the WGS data for teosinte and maize landrace, respectively, after removing sites with 

missing rate above 10% and heterozygosity rate above 60% in the parents.  Using 

skim-WGS of selected progeny of both teosinte and landrace, we phased the SNPs in 

the 49 teosinte parents and 40 landrace parents that contributed to the 4455 teosinte 

and 4398 landrace progenies.  Yang et al. [1] reported the recombination breakpoints 

on all chromosomes for all progeny as defined by the GBS SNPs.  Using these 

breakpoint locations and phased WGS SNPs of the parents, we were able to project the 

WGS SNPs of the parents onto all progeny.  This process resulted in a total of 32.5 

million SNPs with 17.8 million segregating SNPs in teosinte and 18.9 million 

segregating SNPs in maize landrace, of which 4.2 million are shared in both populations.  

Details on how this was accomplished are presented below. 

DNA Extraction, Library Construction, WGS 

Leaf tissue samples from the parents and progeny of teosinte and maize landrace were 

collected for DNA isolation using several different methods.  For the teosinte parents, 

100 – 350 mg leaf tissue samples were collected depending on the DNA isolation 

protocol used, which was either DNeasy® Plant Kit (Qiagen Inc., Germantown, MD) or 

modified CTAB protocol [2].  Due to frequent poor yield with the DNAeasy® kit, DNAs 

were pooled from three to five leaf tissue samples for each low yield parent.  DNAs 

isolated from the modified CTAB protocol were sufficient so no pooling was required.  

For the maize landrace parents, 100 mg leaf tissue samples were collected and 

lyophilized prior to DNA isolation with the same kit but without pooling.  All of the tissue 

samples were lyophilized prior to DNA isolation using DNeasy® Plant Kit (Qiagen Inc., 

Germantown, MD). 

    For WGS of parents, 1ug of DNA was fragmented using a bioruptor (Diagenode) with 

cycles of 30 seconds on, 30 seconds off.  DNA fragments were then prepared for 

Illumina sequencing.  First, DNA fragments were repaired with the End-Repair enzyme 

mix (New England Biolabs). A deoxyadenine triphosphate was added at each 3’ end 

with the Klenow fragment (New England Biolabs).  Illumina TruSeq adapters  (Affymetrix) 

were then added with the Quick ligase kit (New England Biolabs).  Between each 

enzymatic step, DNA was washed with Sera-Mags SpeedBeads (Fisher Scientific).  The 
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70 teosinte parents and 38 teosinte progeny were sequenced at UC Berkley on the 

HiSeq2500 for paired-end 100 base reads (PE100).  The 55 maize landraces were 

sequenced at the UC Davis Genome Center on the HiSeq3000 for PE150.  For parents, 

all the samples were sequenced to achieve ~20x coverage.  For the 38 teosinte 

progeny, the coverage is ~1x. 

    For skim sequencing of other progeny, DNA from the selected progeny was used to 

construct high throughput Illumina Nextera libraries and sequenced at 24 plex in one 

lane of Hiseq X Ten each, providing approximately 2x coverage for each sample 

(https://www.illumina.com/).  Raw data is available at the NCBI BioProject accession: 

PRJNA616247. 

WGS Read Alignment and Variant Calling 

Illumina sequencing reads were aligned to maize reference genome B73 AGPv4 [3] 

using BWA-MEM [4] (version 0.7.13) with default setting, then sorted and indexed with 

Picard tools (http://broadinstitute.github.io/picard, version 2.8.2). Sentieon [5] (version 

201704.03) was used for removing PCR duplicates, and for variant calling. Sentieon 

Haplotyper algorithm was used as described in the Sentieon manual. Only reads with 

mapping quality 60 or higher were used, with call_conf set to 10 and emit_conf set to 10.  

Parent Phasing and SNP Projection to Progeny 

The WGS data for teosinte and maize landrace parents were phased separately.  First, 

the data were filtered to remove non-biallelic sites and insertion-deletion (indel) 

polymorphisms.  We also filtered out SNPs with very high depth in the parents (≥95% 

quantile across all SNPs), suggesting that these SNPs represent duplicated regions of 

the genome.  After filtering, we phased the parents at heterozygous sites using the 

skim-WGS data from selected progeny.  For the selfed progeny, the homozygous 

regions of the genome are known from the GBS data and only SNPs in these 

homozygous regions were used to phase the parents.  For each parent with enough 

selfed progeny, four selfed progeny were selected to provide maximum coverage of the 

parent by the homozygous regions of the progeny.  In most cases, four progeny could 

be chosen to cover more than 99% of the genome.  Phasing using selfed progeny used 
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the fact that each homozygous segment came from a single parental chromosome and 

the other chromosome could be determined by subtraction.  For outcross progeny, only 

sites that were heterozygous in one parent and homozygous in the other can be used to 

phase chromosomes in the heterozygous parent.  When the progeny is determined to 

carry the minor allele from the heterozygote, then it can be used to tag one of the 

parental chromosomes.  In addition, with skim sequence which have read depth of 1 for 

many sites, only when the minor allele is observed can that site be called. On average 

that is about half of the potential sites.  As a result, more outcross progeny are needed 

to provide coverage similar to selfed progeny.  We picked outcrosses to a parent with 

enough selfs so if that parent with selfs can be phased well, then maybe we can phase 

the parent with outcrosses to it decently. 

    In summary, we sequenced 230 progeny for teosinte including 195 selfs and 35 

outcrosses (S5 Table) and 192 progeny for maize landrace including 139 selfs and 53 

outcrosses (S6 Table).  We phased teosinte parents using only selfed progeny as each 

parent had a sufficient number of selfed progeny, i.e., all parents had more than four 

selfs except for one.  For maize landrace parents, we used both selfed and outcrossed 

progeny to phase the parents because there were too few or no selfed progeny for 

some parents, i.e., only 32 parents had enough selfs.  The WGS SNPs of each parent 

were phased using data from single progeny at a time, after which we compared the 

phasing of the parent from different progeny and set those sites that were inconsistently 

phased as missing.  The whole phasing process was done using an in-house Perl script 

(S1 Text).  After phasing, we filtered the WGS SNPs to remove sites with missing rate 

above 10% and heterozygosity rate above 60% in the parents. 

    With the known parentage of progeny and recombination breakpoint locations, the 

phased WGS SNPs of the parents were projected onto progeny with the projection 

function implemented in TASSEL5 [6].  After projection, we filtered the WGS data for 

teosinte and maize landrace separately.  We removed the following: (1) sites with minor 

allele frequency (maf) among the progeny below 0.001, (2) sites with missing rate 

above 20%, and (3) sites with no polymorphism. The final result was the set of 17.8 



6 

 

million SNPs for the 4455 teosinte progeny and 18.9 million SNPs for the 4398 landrace 

progeny that were used for our quantitative genetic analyses. 

Phenotyping 

Yang et al. [1] previously described how the 18 core domestication traits were 

phenotyped.  Seven additional traits scored in teosinte but not previously reported are 

listed in S3 Table.  Details on how these traits were measured are summarized here.  (1) 

BRAN: Number of visible lateral branches along the main culm; counted visually.  (2) 

CULM: Diameter of the main culm just above the ground level measured in plane with 

the leaves (narrowest dimension); measured using a caliper.  (3) FCLN: Average length 

of 10-50 fruitcases along the longest apical-basal axis toward the glume side of the 

fruitcase; measured using SmartGrain [7].  (4) FCLW: Ratio of fruitcase length to width; 

derived from FCLN/FCWD.  FCWD is equivalent to Ear Diameter (ED).  (5) FCTR: Ratio 

of actual area of a fruitcase in profile to theoretical area as given by (FCLN x FCWD)/2, 

larger value means less triangular; derived from (actual area)/(theoretical area).  (6) 

SDDM: Germination tests were performed on harvested teosinte fruitcases.  Twenty 

normal fruitcases were split into two replicates of ten fruitcases each and processed in 

parallel.  Each set of the fruitcases was germinated on a 15 x 20 cm piece of brown 

germination paper (Anchor Paper Co., Saint Paul, MN) that was previously wetted in a 

tray of deionized water.  Then, the ten fruitcases were spread out on the paper and the 

paper was rolled up so that the fruitcases were securely but not tightly held in the roll.  

Twenty-five such rolls were arranged on a sheet of aluminum foil in two layers with a 

piece of wetted and squeezed sponge paper between the layers.  The foil was folded 

and rolled to seal the moisture within the foil wrap.  The finished wraps were placed in 

two incubation chambers, such that the replicates were tested in similar but 

independent environments.  The incubation process was maintained at 37°C and 

complete darkness for five days.  Five days after “planting” the fruitcases, the wraps 

were removed for scoring of the germination rate.  Each fruitcase was examined 

separately and counted as germinated if a shoot or root tip had visibly emerged.  

Germination rates were recorded as a percentage germinated of the ten fruitcases in 

the roll.  Finally, the germination rates from the two replicates were averaged.  (7) 
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STAM: Percentage of male spikelets in the terminal inflorescence of the 2nd or 3rd lateral 

branch from the top of the plant; scored by visual approximation. 

Genome-Wide Association Study (GWAS) 

Given that our populations contain related individuals (sibling and half sibs) with high 

linkage disequilibrium (LD), standard GWAS analysis intended for random mating 

populations is inappropriate.  Therefore, we implemented a scan of the genome using 

stepwise regression analysis.  However, because stepwise regression is 

computationally demanding, it was not feasible to fit models with all 17.8 or 18.9 million 

SNPs.  To reduce SNP number, we first fit a general linear model (GLM) with field 

variables, the inbreeding coefficient, and the first 50 principal components (PCs) based 

on the GBS SNPs as covariates using FixedEffectLMPlugin function in TASSEL5 [6].  

Principal components analysis (PCA) was performed using GBS markers with the 

PrincipalComponentsPlugin function in TASSEL5 [6].  We chose to use 50 PCs, given 

that we had 49 teosinte and 40 landrace parents (families), and thus 50 PCs should 

capture most population structure attributable to individual parents (or families).  To test 

whether the PCs were accounting for significant family effects, we used the lm function 

in R to perform linear regression for each PC by each trait in both teosinte and landrace.  

Almost all of these regression analyses were significant, indicating that the PCs were 

capturing variation attributable to family effects.  The final GLM model was:  

𝑌𝑖𝑗 = 𝜇 +𝐸𝑖 + (𝐹𝑖𝑗 −𝐹..̅)𝛽𝐹 + (𝐹𝑖𝑗 − 𝐹𝑖.̅)𝛽𝐹𝑖 + 𝑥𝑆𝑖𝑗𝛽𝑆 + 𝑥𝐵𝑖𝑗𝐵(𝑌)𝑖 + 𝑥𝑅𝑖𝑗𝛽𝑅1𝑖 + 𝑥𝑅𝑖𝑗
2 𝛽𝑅2𝑖 +

𝑥𝑅𝑖𝑗
3 𝛽𝑅3𝑖 + 𝑥𝑅𝑖𝑗

4 𝛽𝑅4𝑖 + 𝑥𝐶𝑖𝑗𝛽𝐶1𝑖 + 𝑥𝐶𝑖𝑗
2 𝛽𝐶2𝑖 + 𝑥𝐶𝑖𝑗

3 𝛽𝐶3𝑖 + 𝑥𝑅𝑖𝑗
4 𝛽𝐶4𝑖 + 𝑃𝐶1𝑖𝑗𝛽𝑃𝐶1 +𝑃𝐶2𝑖𝑗𝛽𝑃𝐶2 +

⋯+ 𝑃𝐶50𝑖𝑗𝛽𝑃𝐶50 +𝑥𝐴𝑖𝑗𝛽𝐴 + 𝑥𝐷𝑖𝑗𝛽𝐷 + 𝜀𝑖𝑗, 

Where: 

𝑌𝑖𝑗 is the observed phenotype on individual j in environment i. 

The following fixed effects are included in the model: 

𝐸𝑖 is the effect of environment (year) i; 

𝐹𝑖𝑗 is the marker-based inbreeding coefficient estimate for individual j in environment i; 
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𝐹..̅ is the average inbreeding coefficient for all individuals across both years; 

𝐹𝑖.̅ is the mean inbreeding coefficient for all individuals in environment i; 

𝛽𝐹 is the average regression coefficient for phenotypes on the inbreeding coefficient;  

𝛽𝐹𝑖 is the interaction effect of inbreeding depression effect with years; 

𝑥𝑆𝑖𝑗 is the deviation of the shading measurement on the ijth individual from the overall 

average shading measurement; 

𝛽𝑆 is the average shading effect; 

𝑥𝐵𝑖𝑗 is a dummy variable indicating if a plant is in an edge (border) row for teosinte 

plants or in a row adjacent to a tractor tire passing lane for maize landrace plants; 

𝐵(𝑌)𝑖 is the effect of border rows in the first year (since no plants were measured in 

border rows in the second year); 

𝑥𝑅𝑖𝑗
𝑝

 and 𝑥𝐶𝑖𝑗
𝑝

 are p = first to fourth order polynomials of the deviation in the row and 

column directions, respectively, of the ijth plant’s position from the center of the field in 

year i; 

𝛽𝑅𝑝𝑖 and 𝛽𝐶𝑝𝑖 are the regression coefficients associated with the pth polynomials for row 

and column trend effects within year i, respectively; 

𝑃𝐶𝑛𝑖𝑗 is n = 1 to 50 PCs of the ijth plant accounting for family background; 

𝛽𝑃𝐶𝑛 is the average effect associated with the nth PCs; 

𝑥𝐴𝑖𝑗 is a dummy variable indicating the number of minor alleles (0,1,2) at the marker for 

the ijth individual;  

𝛽𝐴 is the additive genetic effect estimate for the marker; 

𝑥𝐷𝑖𝑗 is a dummy variable indicating if the marker is homozygous or heterozygous for the 

ijth individual;  

𝛽𝐷 is the dominance genetic effect estimate for the marker; 
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𝜀𝑖𝑗 is the intercept associated with the ijth plant. 

    We then selected the SNP with the lowest P value within each 200-SNP bin along 

each chromosome, a process that resulted in about 0.8 million SNPs each for teosinte 

and landrace.  This set of SNPs was used for stepwise regression to map quantitative 

trait loci (QTLs) for each trait.  We fit an additive plus dominance model with the same 

covariates as used for GLM with the StepwiseAdditiveModelFitterPlugin function in 

TASSEL5 [6].  For shading effect, we divided the original units by 100 as the original 

values for shading were out of range for the software and produced output without P 

values.  The additive genotype scores were coded as 2 for homozygous major genotype, 

1 for heterozygous genotype, and 0 for homozygous minor genotype.  Since stepwise 

regression does not allow missing genotypic data, we imputed missing genotypes by 

setting them equal to the mean of the genotypic scores for all non-missing taxa.  The 

dominance score was computed as 1 – abs(a – 1) for non-missing genotypes.  For 

missing genotypes, we set the dominance score to 0 as imputation may cause 

overestimation of dominance effects.  The P value to enter and leave the stepwise 

regression model was determined separately for each trait by empirical estimation of the 

genome-wise α=0.05 Type I error rate from genome scans of 1000 permutations of the 

trait data with respect to the independent variables. We then calculated the 

standardized additive effect as |A|/σ for each QTL, where A is additive effect and σ is 

standard deviation. 

Variance Component Analysis (VCA) 

To estimate the proportion of trait additive genetic variation associated with different 

classes of SNPs, we used a procedure to estimate variance components associated 

with different subsets of the SNPs [8-11].  In brief, variance component analysis (VCA) 

was done by (1) classifying SNPs into subsets based on a hypothesis of interest, (2) 

generating kinship matrices for each subset using TASSEL5 [6], and (3) fitting these 

kinship matrices along with phenotypic data into LDAK5 (http://dougspeed.com/ldak/), 

using a generalized restricted maximum likelihood (REML) solver to partition the genetic 

variance (heritability, h2) into the proportion accounted for by each SNP subset [9, 10]. 
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We grouped SNPs in two ways for VCA.  First, we grouped SNPs by recombination 

rate.  We counted the number of crossovers among progeny within 10 kb windows 

along the chromosomes and used these counts to calculate the recombination rate in 

centimorgan (cM) per 10 kb.  The recombination rate for each window was assigned to 

all SNPs in that window.  We also counted the number of genes in each window and the 

10-kb recombination rates after accounting for gene number were then sorted and 

partitioned into five quintiles for calculation of five kinship matrices.  The kinship 

matrices were then fit into a mixed model to simultaneously estimate the additive 

variances associated with each kinship matrix for both teosinte and landrace.  The 

additive variances across 18 traits were averaged and plotted. 

Selection is less effective in regions of low recombination, which is known as the Hill-

Robertson effect. This effect can produce a loss of genetic variance in regions of low 

recombination following a selective episode.  Reduction in genetic variance in regions of 

low recombination can also be caused by the Bulmer effect, when selection generates 

negative linkage equilibrium (LD), which reduces the additive variance.  To compare the 

LD structures within the regions of different recombination rate, we calculated pairwise 

LD between SNPs in parents using Plink v1.90 (https://www.cog-genomics.org/plink2/) 

with defaulted parameters. 

Second, we grouped SNPs by FST between teosinte and maize landrace.  FST was 

calculated according the method of Weir and Cockerham [12].  FST between teosinte 

and maize landrace was calculated for each SNP separately using VCFtools [13] and 

then averaged for non-overlapping bins of 50 SNPs along each chromosome.  The 

average value for each bin was assigned to all SNPs in that bin.  The FST values were 

then sorted and divided into five quintiles for calculation of five kinship matrices.  The 

estimation of FST used all 17.8 million SNPs segregating in teosinte and all 18.9 million 

SNPs segregating in landrace, 32.5 million total SNPs.  The calculation of the five 

kinship matrices for teosinte and landrace were based only on those SNPs segregating 

in teosinte or landrace, respectively.  The kinship matrices were then fit into a mixed 

model to simultaneously estimate the additive variances associated with each kinship 

matrix for both teosinte and landrace.  The additive variances across 18 traits were 



11 

 

averaged and plotted.  We also calculated Watterson’s θ to compare effective 

population size using VariScan software (http://www.ub.edu/softevol/variscan/) by 10-kb 

non-overlapping windows with the common set of 4.2 million SNPs.  
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