
S1 Appendix. The compartmental population
model

The model

This subsection provides details about the epidemiological model. We develop
a framework comprising an SIR component with compartments and a reactive
policy component that models the different algorithms for the definition of re-
strictions implemented between November 2020 – March 2022.

Population compartments in the epidemiological model are stratified by ge-
ography and age. We use r = 1, . . . , 21 to denote Italian regions according to
the Nomenclature of Territorial Units for Statistics – Level 2 (we treat the au-
tonomous provinces of Bolzano and Trento as regions). We consider five age
groups, a, with a ∈ {0− 12, 13− 18, 19− 64, 65− 79, 80+}. Time is defined at
a daily frequency, with each step denoted by t. Let p denote the policy tier,
with p ∈ {white, yellow, orange, red}. Finally, subscript j = 1, 2 denotes variant
type, k = 1, 2 vaccine groups, and d = 1, 2 the number of vaccine doses received,
respectively.

While we assume the population to be fully susceptible to COVID-19 at
the beginning of the pandemic, we initialize state variables to match detailed
information on cases, fatalities, and hospitalizations provided by the Italian
National Institute of Health (Istituto Superiore di Sanità, ISS) on a regional
basis, in combination with estimates on age-specific Infection Fatality Rates
(IFRs) drawn from the literature.

For each r and a, the cumulative number of individuals that have already
contracted the virus up to day t, INFa,r(t), is estimated as:

INFa,r(t) =

t∑
s=0

ma,r

IFRa
Ha,r(s),

where Ha,r(s) is the number of new hospitalizations that occurred in r at time
s, with s ≤ t; ma,r is the ratio between hospitalizations and fatalities from the
ISS COVID-19 surveillance data [1] for a given combination of r and a; IFRa

is the Infection Fatality Rate of a [2].
We compute the notification rate, δa,r(t), for a and r by taking the ratio

between the cumulative sum of notified cases up to day t for region r and age
group a, CASESa,r(t), and estimated infections, INFa,r(t):

δa,r(t) =
CASESa,r(t)

INFa,r(t)

To account for changes in testing strategies, we derive the values for the no-
tification rate based on the period ranging from October 1, 2020, to January
18, 2021. Age- and region-specific rates are used to initialize the model and
simulate the number of detected cases from actual new infections, with average
estimated notification rates equal to 36.0% – 49.1%.

We consider the following model compartments:
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• S : Susceptible individuals are at risk of being infected by the virus. The
per capita rate λa,r,j,p(t) at which individuals acquire the infection is called
Force of Infection (FoI), defined for each variant j. The FoI depends on
time, variant, age group, region, and ongoing policy, and according to

λa,r,j,p(t) = βjβa(1− ϕp)βr(t)
∑
a′

βp,a,a′Ca,a′
Ia′,r,j(t) + τBTIa′,r,j(t)

Pa′,r(t)
.

The proportion of infectious individuals (last term of the right-hand side)
is a model outcome at each time step. In detail, 0 ≤ τ ≤ 1 quantifies
the reduced transmissibility of breakthrough infections, i.e., due to vac-
cine failure. Throughout our analysis, we assume τ = 0.55 as sensitivity
analysis on this parameter shows that the overall transmission is not sig-
nificantly affected by its value. Pa,r(t) corresponds to the overall number
of individuals at time t by age a and region r and is obtained as the sum
of all compartments. Due to their small relative weight, we point out
that hospitalized individuals were included in the denominator term as
an approximation. The derived infectious proportion of the population is
combined with parameters {βj , βa, ϕp, βr(t), βp,a,a′ , Ca,a′}, where:

• βj represents variant-specific contributions to the FoI. It is the prod-
uct of baseline value for the wild type βw = 0.014 and of the variant-
specific improvement in transmissibility; 1.55 times higher for the
Alpha variant, 2.54 times higher for the Delta variant (+64% com-
pared to the Alpha variant, in turn) [3]. The optimal value for βw is
estimated based on an alternate grid search procedure.

• βa represents the age-class specific reduction in susceptibility. We use
β0−12 = 1.0 for children (no reduction), β13−19 = 0.68 for teenagers,
and βa = 0.86 for other adults. As a remark, other than the purely
medical information, we expect such values to capture also the dif-
ferent behavior characterizing age classes.

• ϕp represents mitigation effects on transmission dynamics, as induced
by the sets of restrictions adopted within each policy regime of the
tier system. Values derive from the retail and recreation mobility
indicator in the Google Community Mobility Reports [4]. The in-
dicator exhibits the highest correlation with the values of the repro-
duction number at the regional level. Mobility reductions range from
4.2% (white zone), to 33% (red zone). We account for policy changes
during summer 2021 by considering data in May – June 2021 and
mobility levels during summer 2020 when similar rules were in place.
Moreover, we temporarily adjust mobility levels to reflect specific
events: the large spontaneous celebrations across the country accom-
panying the European Football Championship at the beginning of
the summer (+7%) [5], the loosening of restrictions following the in-
troduction of the EU Digital Covid Certificate in August 2021 (+5%)
[6].
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• βr(t) summarizes the region- and temperature-specific effects and
responsiveness to the mitigation strategies adopted. We take into
account the possible contribution of seasonal conditions in reducing
virus transmission by introducing a regional-specific correction factor
that depends on the deviations of temperatures from the median
value over the year (see Further information on model parameters).

• Product term βp,a,a′Ca,a′ represents the average number of effective
daily contacts between individuals from age classes a and a′, as de-
signed by the Polymod matrix [7]. We exploit the dependence of
βp,a,a′ on tier p to reduce the average number of effective daily con-
tacts among children and teenagers only to account for age-specific
provisions adopted on school closures and remote learning, i.e., βp,a,a′

differs from 1 if a = a′ and a ∈ {0−12, 13−19}. We obtain the values
for the two age groups using data on mobility and school restrictions
and validate them throughout the available periods. We set them to
0.3 for the red zone, 0.5 for the orange one, 0.7 for the yellow one, and
0.75 for the white one. Over the summer, we set 0.6 as the baseline
and consider values 0.5 and 0.8, respectively, for Optimistic rollout
and Pessimistic rollout.

Beyond natural infection, susceptible people may leave the compartment
following the first dose of the vaccine (d = 1), according to monthly age-
specific coverage rates ηk,a(t), for vaccine type k. Vaccinated individuals
receive a second dose (d = 2) after a pre-determined interval, depending
on vaccine type (21 days and 90 days, respectively, for k = 1 and k = 2).

• Vk,1: We consider two sets of vaccines. The first set (k = 1) consists of
Pfizer BioNTech and Moderna vaccines, whereas the second includes the
Oxford-AstraZeneca and Johnson & Johnson vaccines. The two vaccine
types are administered based on different timing and are targeted to dif-
ferent age groups in line with the government’s plan. The two vaccine
types also differ in their efficacy. We account for observed regional roll-
out schedules (see S4 Vaccine rollout and coverage rate scenarios). All
vaccines require two doses to reach full effectiveness, with different ad-
ministration schedules. Since the marginal contribution of the single-dose
vaccine (Johnson & Johnson) is negligible – about 3.1% of the fully vac-
cinated people as of January 31, 2022 – we assume that all vaccines be-
longing to group 2 require two doses for the sake of simplicity. We model
such a setup by accounting for a first compartment, Vk,1, where suscepti-
ble vaccinees are transferred with age-specific coverage rate ηk,a, k = 1, 2.
Once in the compartment, people may either acquire the disease due to
vaccine failure – i.e., the complement to one of vaccine efficacy εa,r,k,j,1(t)
- or receive the second dose with rates σ1 = 1

21 days and σ2 = 1
90 days and

move to the respective compartment Vk,2.

• Vk,2: People who received both doses of vaccine type k are exposed to
breakthrough infection, net of vaccine efficacy values εa,r,k,j,2(t). Param-
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eters εa,r,k,j,2(t) account for the administration of the booster doses, fol-
lowing the government’s plan (see S4 Vaccine rollout and coverage rate
scenarios).

• Ij: At each time step, susceptible individuals are exposed to the risk of
acquiring the infection and becoming infectious with variant 1, the in-
cumbent variant Alpha, or variant 2, the new variant Delta. Throughout
their stay in the infectious compartments, individuals contribute to the
respective FoI. They finally move to the Recovered compartment, R, fol-
lowing a generation time γ−1 = 5.6 days [8] or are hospitalized in ICU or
non-critical medical areas (MA). In the former case, we assume that indi-
viduals no longer contribute to the FoI because they either recover from
the disease or get tested and isolate themselves until complete recovery.
As a technical remark, hospital admissions occur with a systematic delay
of around four days in the latter case. Another technical assumption is
that people in the infectious compartments are not subject to any death
risk from the disease.

• BTIj, j = δ, α: Vaccinated individuals that acquire the disease due to
vaccine failure against virus type Alpha or Delta enter the corresponding
infectious compartment, then leave it at a rate of γ. At the regional
level, the efficacy of vaccine type k against severe infections from variant
j after d doses, i.e., εa,r,k,j,d(t), is modeled based on the attained coverage
rates for each age group and the vaccination cohorts determined by the
timing of administration. The last assumption allows us to account for
the waning immunity. For the sake of simplicity, we use constant efficacy
values against the severe disease following the first dose, i.e., εa,r,k,j,1(t) =
εk,j,1 (see Table S1).

• MA, ICU, MABT, and ICUBT: People leaving infectious compartments
may fully recover or be hospitalized with a two-day delay following self-
isolation. Hospitalization entails admission either to the medical area
(MA) or intensive care unit (ICU). To model hospital admissions, we re-
tain a share ξj,a of the individuals leaving Ij at a rate of γ, j = δ, α.
ξj,a represents the variant- and age-specific probability of hospitalization
among infected individuals. Hospital admissions into MABT and ICUBT

occur according to ξ′j,a, which is equal to ξj,a scaled down by a constant
average factor of 0.3 (0.15− 0.45) [3]. Among hospitalized individuals, an
age-specific proportion, ιa, is admitted to intensive care units, i.e., ICUs,
whereas the remainder is conveyed to medical areas, i.e. MAs. Values for
ξj,a and ιa are derived using individual information in the ISS database
and increase with age. Hospitalized individuals leave the MA and ICU
stages at rates of γMA and γICU , respectively. Among these, an age-
specific proportion dies according to an age-varying parameter µa that is
computed based on the ISS COVID-19 surveillance data on fatalities and
hospitalizations.
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• R: Recovered individuals from the natural disease move into the recovered
compartment, where they are no longer susceptible to the virus throughout
their stay. We assume that immunity from the disease cannot wane [9],
which seems sensible in the context of a single wave. The individuals of
the R compartment with one of the two sets of vaccines available move
into the stage of vaccinated individuals that are no longer susceptible
to any SARS-CoV-2 infection denoted as VR. This assumption seems
reasonable in the context of infections related to Alpha and Delta, in
which the overall number of reinfections was negligible. The initial share
of recovered individuals in each region is estimated from hospitalizations
and fatality rates as described above:

Ra,r(t0) = INFa,r(t0)−
t0∑
s

Ma,r(s),

where Ma,r(t) denotes the observed number of deaths for a and r at time
t.

• VR: Vaccinated individuals developing breakthrough disease from infec-
tion are assumed to leave the BTI compartment on average after five days
and acquire complete immunity. Unlike the compartment R of individ-
uals who recovered from natural infection, subjects in VR are no longer
eligible for a vaccine by definition.

The model considers two main trajectories: the dynamics of natural infec-
tions and that induced by vaccination. For each a and r and given p, model
dynamics are described by the following ordinary differential equation system:
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S′
a,r(t) = −

∑
j

λa,r,j,p(t) +
∑
k

ηk,a(t)

Sa,r(t)

I ′a,r,j(t) = λa,r,j,p(t)Sa,r(t)− γIa,r,j(t)

MA′
a,r(t) = γ(1− ιa)

∑
j

ξj,aIa,r,j(t)− γMAMAa,r(t)

ICU ′
a,r(t) = γιa

∑
j

ξj,aIa,r,j(t)− γICUICUa,r(t)

R′
a,r(t) = γ

∑
j

(1− ξj,a)Ia,r,j(t) + (1− µa)(γMAMAa,r(t)+

+ γICUICUa,r(t))−
∑
k

ηk,a(t)Ra,r(t)

V ′
a,r,k,1(t) = ηk,a(t)Sa,r(t)− (σk +

∑
j

(1− εa,r,k,j,1(t))λa,r,j,p(t))Va,r,k,1(t)

V ′
a,r,k,2(t) = σkVa,r,k,1(t)−

∑
j

(1− εa,r,k,j,2(t))λa,r,j,p(t)Va,r,k,2(t)

BTI ′a,r,j(t) = λa,r,j,p(t)
∑
k

((1− εa,r,k,j,1(t))Va,r,k,1(t) + (1− εa,r,k,j,2(t))Va,r,k,2(t))

− γBTIa,r,j(t)

MABT
′
a,r(t) = γ(1− ιa)

∑
j

ξ′j,aBTIa,r,j(t)− γMAMABTa,r(t)

ICUBT
′
a,r(t) = γιa

∑
j

ξ′j,aBTIa,r,j(t)− γICUICUBTa,r(t)

V R′
a,r(t) =

∑
k

ηk,a(t)Ra,r(t) + γ
∑
j

(1− ξ′j,a)BTIa,r,j(t)

+ (1− µa)(γMAMABTa,r(t) + γICUICUBTa,r(t))

We derive approximate solutions to the model equations using the fourth-
and fifth-order Runge-Kutta-Fehlberg solver method with daily step size con-
trols [10]. We choose the solver from the GSL-ODE library and implement our
system of equations using the C++ language.

Further information on model parameters

This subsection provides further information concerning the derivation of the
model parameters described above.

Most model parameters are adopted from published estimates or directly
estimated from ISS COVID-19 Surveillance epidemic data [1] (see Table 1 in
the Supplementary Information).
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The parameters adopted from published estimates are: the generation time,
γ−1 [8]; a reduction factor for hospitalizations among breakthrough infections,
ξ′j,a [3]; age-specific infection fatality rate, IFRa [2]; vaccine efficacy (dependent
on age group, region, vaccine type, variant, vaccine dose and time), εa,r,k,j,d(t)
[3]. Regarding vaccine efficacy, we rely on Italian Civil Protection data to model
waning immunity [11]. The data contain aggregate information on vaccine roll-
out by date, region, age group, and vaccine type. We collapse this information
by month, age-group, region, and vaccine type. Hence, we can compute the
age of a vaccinee cohort for each month. Knowing the efficacy of a vaccine at
different times from its administration allows us to compute the efficacy for each
vintage, region, and age group and to use in the model.

We derive the following group of parameters directly from the data provided
by the ISS: age-specific proportion of hospital admissions among infected indi-
viduals for variant type j, ξj,a; age-specific share of individuals admitted to ICUs
among hospitalized individuals, ιa; recovery rate of individuals hospitalized in
MAs, γMA; recovery rate of individuals hospitalized in ICUs, γICU ; age-specific
fatalities to hospitalizations ratios, ma.

We calibrate the two sets of free model parameters for each considered region.
The first set of parameters represents the relative regional effectiveness of

tier provisions, βr(t). These parameters adjust the transmissibility to reflect
local dynamics relatively to a national baseline.

For each region, we find the value minimizing the mean squared error be-
tween actual and model-based incidence through a grid search (with step size
ϵ = 1e − 4) for the period November 9 – December 30, 2020. The grid derives
from regressing the region reproduction number on the local policy regime, a
time dummy, and region dummies, between October 1, 2020 – January 25,
2021, with the 95%-confidence interval associated with each regional coefficient
providing us with the boundaries of the grid itself (values in Table 1).

We rely on the observed tier restrictions, shutting down the model compo-
nent reproducing the algorithm for policy tiers. We successively validate the
results obtained in the first step by restoring the algorithmic component so that
the restrictions are determined endogenously within our model. Estimated re-
gional effects are reported in Table 1, together with the ranges used for the grid
search.

Concerning seasonal conditions, the literature finds an inverse relationship
between temperatures and SARS-CoV-2 transmission, which may be not only
strictly related to the direct effects of higher temperatures on the virus but
also to other causes, e.g., more frequent outdoors social interactions with warm
weather conditions [12]. Nonetheless, there is no clear consensus on the quanti-
tative effects of temperatures [13]. Based on the available evidence, we assume
that an increase of one degree Celsius decreases the regional effects by 0.015.
Given the high uncertainty about this effect, we also consider the range of
[0.005-0.025]. We obtain daily average temperatures for all Italian regions over
the past ten years (downloaded from www.ilmeteo.it). Given the high transmis-
sibility of the Delta variant and the unprecedented outbreaks also observed in
the warmest areas of the globe, we assume a low-temperature effect on trans-

7

www.ilmeteo.it


missibility (0.005). We also explore the effect of considering alternative values
for this parameter in the range of [0.0025− 0.0075].

The second set of parameters concerns the regional relative prevalence of
variant 2, Delta, on June 14, 2021. During the period of our simulations (second
half of 2021), Delta was replacing Alpha as the most prevalent variant circulating
in the country [14, 15].

We calibrated the regional prevalences of Delta on June 14 by a grid search
minimizing the mean squared error between the actual and model-based inci-
dence over three weeks (June 14 – July 4, 2021), taking the restrictions as given.
To this extent, we consider a uniform grid between 0 and 1, with the same step
size ϵ used for regional effectiveness parameters. As before, we validate our pro-
cedure by allowing the restriction tiers to be determined endogenously by the
interaction between the epidemic and policy.
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Region Fixed Effects Delta Prevalence
Piedmont 0.950 [0.998,1.095] 0.964
Aosta Valley 1.092 [1.082,1.178] 0.900
Lombardy 1.236 [1.157,1.254] 0.618
Veneto 1.015 [0.889, 1.187] 0.889
Friuli-Venezia Giulia 0.980 [0.904, 1.001] 0.294
Liguria 1.034 [0.975, 1.072] 0.667
Emilia-Romagna 1.242 [1.046,1.243] 0.768
Tuscany 1.002 [0.926,1.023] 0.930
Umbria 1.001 [0.984, 1.081] 0.900
Marche 0.942 [0.878, 0.975] 0.556
Lazio 0.977 [0.856, 0.984] 0.651
Abruzzo 1.173 [1.088, 1.183] 0.437
Molise 0.888 [0.872, 0.970] 0.900
Campania 0.861 [0.850, 0.946] 0.705
Apulia 1.075 [0.978, 1.075] 0.838
Basilicata 0.885 [0.879, 0.976] 0.901
Calabria 0.909 [0.909, 1.005] 0.700
Sicily 0.985 [0.905, 1.001] 0.971
Sardinia 0.833 [0.779, 0.877] 0.333
Autonomous Province of Bolzano 1.075 [1.072, 1.179] 0.402
Autonomous Province of Trento 1.105 [0.944, 1.242] 0.903

Table 1: Derived values and ranges for fixed regional effects and derived preva-
lence of the Delta variant for new infections occurring on June 14, 2021. On
fixed regional effects, upper and lower bounds represent the extrema of 95%-
confidence intervals of the coefficients of regional dummies in a regression of
regional reproduction number on time fixed effects and lagged policy regimes
(and regional dummies) for the period October 1, 2020 – January 25, 2021. De-
rived values are combined with seasonal effects. On Delta prevalence, optimal
values are derived from the unit interval, to track the regional growth in the
number of new infections occurring from June 14 to July 4, 2021.
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