
S1 Appendix. Motivation for the use of Sentinel-2. We make use of Sentinel-2 

satellite images provided by EU’s Copernicus program operated by the European Space 

Agency [1], with each pixel’s resolution of 10m×10m. The satellite’s instruments is 

made of a set of 13 spectral bands spanning from the visible light to the short-wave 

infrared (see S1 Table), hence constituting a reference service for land monitoring, 

emergency response and security services. Alternative sensors offer lower resolutions 

(like 3 meters resolution with PlanetScope) but the cost to cover a large-scaled region 

would be tremendous. Moreover, Sentinel-2 satellite images follow an open data policy 

by allowing all users to freely access high resolution data from 2015 to nowadays, with 

an attractive revisit period of 5 days in most parts of the world (including Africa), and 

the mission’s operation is planned until 2025 (with a potential extension to 2030), 

making the use of Sentinel-2 a reliable and sustainable solution for several years.

S2 Appendix. Sentinel-2 data. The project’s scalability represents a major 

technical challenge, as the area covered represents 222 different Sentinel-2 tiles - one tile 

matches 100km×100km at ground level - (S5 Fig): 100 tiles are required to create the 

labelled dataset and the remaining tiles being a mixture of uncompleted / too cloudy 

tiles, or tiles used to test other methods, such as enhancing the training set with 

temporal data. Thanks to the Copernicus program policy, Sentinel-2 images are freely 

available [1], but still with some limitations:

• According to their product retention policy, Sentinel-2 images products are kept 

online according to a sliding window period of around one month. After this 

period, the image is archived and needs to be explicitly queried before being able 

to download it. Building a system to keep automatically track of Long Term 

Archive for all images before 2020 on Copernicus bib29 [1] is required.

• Sentinel L2A level images were rarely available. We only stored L1C level images

and processed them ourselves automatically with Sen2cor on our infrastructure to

transform them into L2A (cf S3 Appendix).

To give an insight of the storage capacity needed, once processed, stacked and

normalized, each Sentinel-2 tile weights approximately 6 Go. Additionally, in case of

failure during the processing pipeline, it is recommended that each processing state of

the tile is stored separately : downloaded archive (∼ 800 Mo), extracted Level-1C

product (∼ 800 Mo), L2A level product (∼ 1 Go) and finally its stacked (∼ 3.1 Go) and

normalized (∼ 6.3 Go) versions. In our case, these tiles are stored in Hard Disk Drives

(HDD) of 12TB and 2×8Tb that are duplicated for backup.



S3 Appendix. Images pre-processing overview. In order to use the satellite 

images as input for our model, we apply the following four-steps pre-processing 

methodology on the downloaded tiles (100 × 100 km2): first, we atmospherically and 

geometrically correct the Sentinel-2 images thanks to the Sen2Cor program. Sen2Cor 

also creates a scene classification map (scm) that maps each pixel into various 

categories, like cloud or water (S2 Table). Second, bands with a resolution of

20m × 20m are upscaled to the joint resolution of 10m × 10m, and spectral bands with 

a resolution of 60m × 60m are discarded (S2 Fig). Third, we transform the mentioned 

classification bands into 12 one-hot encoded bands (binary value per pixel and per band, 

each band respectively indicating the presence of clouds, water or defective data, cf S2 

Table). Fourth, we normalize the image by mapping the histogram’s 2nd and the 98th 

percentiles to [−1, 1] for each spectral band (each pixel considered as saturated or 

defective or cloud high and medium probability are excluded from the percentile 

calculation). The interval for cutting the histogram was chosen upon visual criteria. As 

it greatly helps the human eye to detect features on the satellite images, we expect it to 

improve the parameter learning for the model as well. A visualization of the processing 

pipeline is available on S6 Fig. To train our model, we apply additional steps for data 

augmentation: we extract the data from our training set regions (14.5km × 14.5km, 

each) with different rotations (15, 30 and 45 degrees) and divide them into overlapping 

patches of 572 × 572 pixels (overlapping as model’s input and output sizes are different). 

Ultimately, during the training, various random transformations are applied to the 

patches with a given likelihood - flipping, brightness and contrast modifications, 

transpositions and 90 degrees random rotations - thanks to the Albumentation image 

augmentation library [2].



S4 Appendix. Detailed overview of the U-Net model. We make use of a 

modified version of the deep learning model U-Net [3]. One should notice that this 

model’s input size (572 × 572 pixels) is larger than the model’s output size (388 × 388 

pixels) as the convolutions are unpadded, to avoid zero padding and to rather use all of

the context’s richness from the images, which was pertinent in our case. In practice, we 

have tested various model versions before to set its final shape. Starting with a “vanilla” 

U-net, then implementing slightly different variations by adding and/or removing layers 

and/or features, adding residual blocks [4], and finally adding batch normalization and 

dropout layers. It appears that the most efficient version of the model was the original

structure, only enhanced by the two latter adds. Other versions either gave similar 

performances while generating higher complexity, either resulted in gradually poorer 

performances when departing too far from the initial model’s structure. Also, we have 

tested using the original U-net without any dropout nor batch normalization layers. At 

the end, all ended with higher metrics on our training data but much worse metrics on 

our validation data, which was a clear sign of over-fitting. Hence, our model differs from the 

standard U-Net model by having additional batch normalization layers [5] and dropout 

layers [6], with a dropout probability considered worth 0.3, to reduce its initial tendency to 

over-fit on the training data. Intrinsically, this dropout layer randomly sets some of the 

network’s neurons to 0 during training, so that iteratively the model is forced to activate 

all the neurons. The effect is that the network becomes less sensitive to specific neurons, 

resulting in a better generalization, which was mandatory for our purposes. For training, 

we used a focal loss function [7] (with parameters γ = 2, α = 0.25) combined with the 

Adam optimizer (learning rate = 1.0 × 10−3) [8]. Even if the latter stands as a widely used 

and cross-validated tool in deep learning models calibration [9, 10], other losses were tested 

at first, like the usual binary cross-entropy, the tversky loss [11] and the focal tversky loss 

[12]. Finally, the focal loss is the best performing loss function, as it was designed for 

imbalanced dataset problems just like ours. Additionally, we made use of the bib37 [13] 

python library which optimizes neural networks hyperparameters to get the most accurate 

results. With this library, the hyperparameters are still chosen by hand, however it allows 

to pick an initial range of values to be tested for each of them. The ones leading to the best 

results are saved, by testing them iteratively on a few epochs. The optimized parameters 

ranges are: the learning rate [1.0 × 10−4 : 1.0 × 10−3], the number of filters used on each 

convolution layer {16; 32; 64}, the dropout rate {0.1; 0.3; 0.5} and the size of the kernel in 

convolutions {3; 5; 7}.



Concerning the U-net model’s structure more specifically, it consists of an U-shaped

encoder-decoder structure, with the contraction in the beginning, the bottleneck in the

middle and the expansion part in the end. The contraction part is made of multiple

convolution and pooling layers. These blocks down-sample the image while extracting

the sharpest features at the same time. The number of features is doubled after each

down-sampling so that the model can learn more effectively the complex structures of

the image. The bottleneck part is the bottom part of the “U” which is needed to link

the contracting and expanding parts. This part corresponds to the final compression of

the input data, meaning this view contains only the primary useful information needed

to be able to reconstruct the segmentation map based on the input. S7 Fig displays an

example of what was obtained at the bottleneck, i.e. what are called the feature maps.

Some of them have a strong value on the left side, with a shape similar to what the

ground truth looks like, which means the asm have been successfully recognized as so.

The expansion part is quite similar to the contraction but the down-sampling becomes

an up-sampling of the image. However, the input of each expansion block is

concatenated to the corresponding contracting block in order to reconstruct the image

with context information from the higher resolution layers. Eventually, the model is

applied a 1×1 convolution with a binary cross-entropy activation which gives to each

pixel of the output image a probability value between 0 and 1 of being a mine.

S5 Appendix. Overall Metrics. In this paper, are referred as True Positives (TP)

the pixels correctly predicted as mining areas - i.e. pixels that were defined as a mining

area in ground truth -, as True Negatives (TN) the pixels correctly predicted as not

mining areas, and as False Positives (FP) and False Negatives (FN) the pixels that were

mistakenly predicted as mines and not mines respectively. In Machine Learning analysis,

these are the core statistical results - from which the majority of the other metrics

derives from - traditionally presented within a Confusion Matrix (CM) as illustrated on

S8 Fig. From the CM can be computed a wild number of metrics.



For the F(β)score, the β parameter (β > 0) enables us to state which of precision or

recall is the priority performance, setting β to 1 results in looking for perfect balance

between precision and recall, whereas β > 1 results in focusing on the recall, and on the

contrary β < 1 results in giving priority to the precision. Note that the F(β)score ranges

between 0 and 1, the higher the value, the higher the model’s performance. Concerning

the MCC, it behaves like a traditional correlation coefficient: 0 meaning that the

model’s performance is no better than with a random model; 1 if the model perfectly

predicts all the pixels; and -1 pointing out a total disagreement between the prediction

and the ground truth.

Another interesting computed metric is the ROC Curve, which gives us the trade-off

between the True Positive Rate (TPR) and the False Positive Rate (FPR) for various

probability thresholds. It also provides a measure comparable to other models via the

computation of the area under this curve (AUC) score (S4 Fig).

S6 Appendix. Promising improvement leads. Several directions for improving 

the performances and/or extending the area covered may be considered. The first path 

would be to conduct some biome-targeted specific training. From our experience, we 

expect that using images having less diverse backgrounds would greatly strengthen the 

model’s ability to distinguish the mines from the other landscapes. It requires having 

enough example data into each biome separately, and hence processing larger areas than 

our current studied region. The second further improvement stands in the use of 

temporal coverage. We may feed the model with images from the same places but at a 

slightly different time (for instance, into a 1 month window around the original date), 

while keeping the same asm labelling. It would drastically enlarge the training data 

easily, but at the cost of assuming that the labelled asm shapes do not change over time, 

hence resulting in a decrease of our labelled data accuracy. Third, we think promising to 

use weakly supervised training technology [14] to fine-tune the model’s performances, by 

making use of the worst recurring predictions spotted. One can imagine to implement 

this several times, by incrementally recreate a new training set containing the latest 

worst errors observed from each latest prediction, with for instance varying proportions 

of asm, or with varying proportions of each landscape / feature. Note that contrarily to 

the evolving training sets, the validation and test datasets must remain unchanged in 

order to assess trustworthy performances analyses. Fourth, by adding or improving pre-

and post-processing filters (e.g. a cloud or river mask), which would assume a trade-off 

between removing all possible false positive occurrences while at the same time removing



some accurate predictions. Fifth, integrating alternative physical information in the

input bands, such as radar or telemetry data, would certainly help in spotting the most

steep mines, at the cost of adapting this kind of data to the current Sentinel-2 format.

Last, we envision extending to larger regions by making use of transfer learning from

the most ”easy” (i.e. vegetated) biomes to the most “difficult” (i.e. arid) ones, hence

overcoming the challenge of discriminating the mines within plain-colored landscapes.

S1 Table. Spectral bands of Sentinel-2 images. Characteristics of the spectral

bands perceived by Sentinel-2 sensors. The bands shaded in light gray are excluded

from our model’s inputs as the resolution is too low and as they are mostly measuring

atmospheric properties.

Spectral band Central wavelength [nm] Spatial resolution [m]
442 60
492 10
559 10
665 10
704 20
740 20
781 20
833 10
864 20
944 60

1,375 60
1,612 20

band 1 (coastal aerosol)
band 2 (blue)
band 3 (green)
band 4 (red)
band 5 (Vegetation red edge)
band 6 (Vegetation red edge)
band 7 (Vegetation red edge)
band 8 (NIR)
band 8A (Narrow NIR)
band 9 (Water vapour)
band 10 (SWIR - Cirrus)
band 11 (SWIR)
band 12 (SWIR) 2,194 20

S2 Table. Sen2Cor classification. Overview of the classes produced by the

Sen2Cor application and their corresponding values.

Value Classification
0
1
2
3
4
5
6
7
8
9
10
11

NO DATA
SATURATED OR DEFECTIVE
DARK AREA PIXELS
CLOUD SHADOWS
VEGETATION
NOT VEGETATED
WATER
UNCLASSIFIED
CLOUD MEDIUM PROBABILITY
CLOUD HIGH PROBABILITY
THIN CIRRUS
SNOW



1. url=https://bib29.copernicus.eu/

2. Buslaev, Alexander and Iglovikov, Vladimir I. and Khvedchenya, Eugene and

Parinov, Alex and Druzhinin, Mikhail and Kalinin, Alexandr A. Albumentations:

Fast and Flexible Image Augmentations Information 2020

3. Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas U-Net: Convolutional

Networks for Biomedical Image Segmentation 2015

4. Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun Deep Residual

Learning for Image Recognition 2015

5. Sergey Ioffe and Christian Szegedy Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift 2015

6. Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya

and Salakhutdinov, Ruslan Dropout: A Simple Way to Prevent Neural Networks

from Overfitting Journal of Machine Learning Research 2014

7. Tsung-Yi Lin and Priya Goyal and Ross Girshick and Kaiming He and Piotr

Dollár Focal Loss for Dense Object Detection 2018

8. Diederik P. Kingma and Jimmy Ba Adam: A Method for Stochastic

Optimization 2017

9. Libo Wang and Rui Li and Chenxi Duan and Ce Zhang and Xiaoliang Meng and

Shenghui Fang A Novel Transformer based Semantic Segmentation Scheme for

Fine-Resolution Remote Sensing Images 2021

10. Adam Paszke and Abhishek Chaurasia and Sangpil Kim and Eugenio Culurciello

ENet: A Deep Neural Network Architecture for Real-Time Semantic

Segmentation 2016

11. Seyed Sadegh Mohseni Salehi and Deniz Erdogmus and Ali Gholipour Tversky

loss function for image segmentation using 3D fully convolutional deep networks

2017

12. Nabila Abraham and Naimul Mefraz Khan A Novel Focal Tversky loss function

with improved Attention U-Net for lesion segmentation 2018

13. url=http://bib37.github.io/bib37/

14. Ienco, Dino and Gaetano, Raffaele and Gbodjo, Yawogan Jean Eudes and

Interdonato, Roberto Weakly Supervised learning for land cover mapping of

satellite image time series via attention-based CNN IEEE Access 2020

References




