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1 Simulation Results for Unbalanced observations

We investigate the performance further for the unbalanced observations. The sampling
procedure is conducted in a similar way of the balanced version. In the balanced
version, we generate the data set using equally-spaced 100 time points out of the data
on 500 time points. In the unbalanced version, we choose 100 time points randomly
for each observation, i = 1,...,n. Then we generate 100 samples for each scenario and
summarize the results in S1 Table and S2 Table.

The table in S1 Table shows the estimation consistency based on the RMSE for
each case. We can see that our sparse methods outperform the OLS and the ridge
penalty and the results are very close to the oracle. We can also see that the difference
from the oracle becomes smaller as n increases.

The table in S2 Table shows the performance of the selection performance. Even
with the unbalanced case, the methods always choose the active functional predictors
correctly as the balanced case, but the it tends not to remove the inactive functional
predictors. The major reason for that is because of the model we used. We generate
the functional data X based on the random walk. It is obvious that the balanced
observation has a strong advantage against the unbalanced case in the function
estimation procedure. Overall, considering the estimation performance, even with this
disadvantage, the functional group sparse methods work very well.

2 Proof

Proof of Lemma 1 The representation of [f‘XX] can be shown by the relation
between the two following equations.

<f7 1A—‘XXg>7-¢ = En(<faX - E7LX>H<g’X - E7LX>’H) = [f];G[Xlin]BQ[Xlrn]B[g]B’
(f, f‘XXQ>H = [f]g[f‘xx][g]&

for any f,g € H. The second equation can be shown as following. For any 8 € H,

= B {(Y = E,Y)[X — E, X]"G[8]}.

We can also see that ['xy = nfl[)N(le]. a
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Lemma 6 Toke x,y € R™ where y is known.
. (1
angain  3lle = o1+ Al ) = S1(0), (23)

where Sx(y) = 1|y >x) (1 — ﬁ) y is the block soft threshold operator in real space. 2
+

Proof of Lemma 6. Observe that

1 1
arg min (2<x )Ty + Anxn) — argmin (2<xTx oaTy) + A|x||) |

To satisfy the Karush-Kuhn-Tucker (KKT) stability condition, the derivative of 2
the above objective function with respect to £ must be equal to zero. If the derivative 2
does not exist, the subdifferential must include zero. The derivative is x — y + As, 2
where s, is the subdifferential of ||z| at x. 2

If x #0, s, = x/| x| and the KKT condition gives
a1+ A [z]) = y.

Compute the ||y|| in the preceding equation and solve for ||z|. Plugging it back into
the equation gives us,

z=(1=XMlyly-
The condition x # 0 is equivalent to ||y|| > A. On the other hand, x = 0 is equivalent 27

to 0 € —y + Asy, or y € As,. In this case s, = {z € R™|||z|| < 1}. Therefore, 2
lly[|? < A? which completes the proof. O
Proof of Theorem 1. 30

1) B-update. 3

Consider the objective function for 8 in (9). After removing the constant terms
with respect to [, with the help of Lemma 1, we have

(5] : = avgmin (£(8) + 2(18] ~ bl + W) (8]~ (4] + [0])

— arguugn (oo (81 0 T18] — 20817, l1) + 418718 - 251700 - ).

n

Differentiate with respect to 3, and set the derivative equal to zero to satisfy the KKT
conditions. The result is:

0T XX T8 = T XLDY + (8] - (] - [U]) = 0.

Solve for 8 which completes the derivation. Note that the result is similar to the 2
functional ridge regression. 33
2) y-update. e

Similarly, if we remove the constant terms with respect to v and expand the
objective function for -y, we have

() = argmin (g(3) + £((8™] = ) + [U)T(18) = bl + V)
=argmin | SO TTDE + 2071 = ()1 + D) (0] = (8] + 7))}

Note that the objective function is now additive which allows us to optimize ~ for each

~3, 5 =1...,p. Thus, the above optimization is equivalent to

. new . . . 1 p . . new . . . new .
(/)] = arg min (A(W]TW])‘Z +5 (071 = (7)™ + O] = ([(B7)™] + [UJ]))) ;
for j =1,...p. Applying Lemma 6 completes the proof. O s
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Lemma 7 For x,y € R™ where y is known and a,b are constants
(1 T Tk, b7
arg min 5(33 —y) (x—y)+alz z)2 + JT e = ——S.(y).
T

Proof of Lemma 7.

The proof is similar to that of lemma 6. The only difference is the derivative of the
objective function. It is x — y + as + bz, where s is the subdifferential. The rest of the
proof is straightforward. If x # 0 we see that z(1+ b+ H%H) = y. Taking norm ||.||
from both sides, solving for ||z||, and plugging it back, we would have
x = (ﬁ)(l - m)y Note that this is only possible when [|z|| > 0, which means

lyl| > a. If £ =0, it results in 0 € —y + as, or y € as. Since in this case

s =A{[Z]|Z e Rm&||Z]|| < 1}, |lyll < a, which completes the derivation above. O
Proof of Theorem 2. The proof is a straightforward result from the combination of
Theorem 1 and Lemma 7. O

Lemma 8 Assume that I'x x is a positive definite operator and when n approaches
infinity, A, approaches zero slower than the rate at which \/n approaches infinity.
Then, |(Txx + M) 'Txx — (Txx + M) Txx|n = Op(A;'n"1?), and

H(fXX + /\nI)_lf‘XX — (Pxx + M) Txx|l3 = Op( N, 1n~Y2), where || - ||l is the
operator norm.

Proof of Lemma 8. Note that Ixx(Txx + M) =1—-X\,Txx + A1)t and
(FXX + )\nI)FXX =1 )\n(FXX + Anl)_l. Therefore,

Cxx + D)™ = Txx + M) = Txx + D) Hxx — Pxx)(Txx + M)

To be specific, if we add and subtract )\n(fXX + A D) 1 (Txx + A D)7 in the
left-hand side of the above equation, we can easily derive the right-hand side of the
equation. In addition, we have
(Txx + M) 'Txx — (Txx + M) 'Txx
= (fXX + A D) M (Txx — fXX)(FXX + M) ' Txx. (24)
Note that (Txx + A1) ~! = (Cxx + Op(n~1/2) + X, 1)~ by Lemma 4. Thus, its norm
is ||(FXX + )\nI)_lnj{ = Op()\;l) By Lemma 4, H(FXX — FXX)H’H = Op(n_l/Q). The
norm of product of the last two parentheses is bounded by 1. Hence,
[(Cxx +AD) 'Txx — Txx + M) Txx|n = Op(A\; 10~ 1/2).
For the second convergence rate, note that
Txx +MD)'Txx — (Cxx + M) 'Txx
= (fXX + )\nI)il(f‘XX — Fxx) = Op(/\;1n71/2).
Therefore,
I(Cxx + M) Txx — Cxx + M) 'Tx x|l
< N@xx + M) Txx — Cxx + M) Txx|ln

+[(Txx + M) Txx — Txx + Ad) Txx|n
= 0,(\,'n71/?).

Proof of Lemma 5.
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The following proof is similar to the proof mentioned in [1] which considers a
different penalty term that is square of the group LASSO penalty. Then, they proved
the consistency by stating that the solution path of the group LASSO will be the
same. Instead, we consider a different optimization problem M,,(.) proposed below,
which directly leads to the consistency of multivariate functional group LASSO.

Denote /3’;{ as the unique minimizer of the following objective function.

- 1. L, a
Mn(a) 7FYY_FYX’( )+7<a’FXJX’ +7Z H JH acH,
2 2 189|505

where 37 is the j-th functional component of 37 in the population model. 3/ has a
closed-form solution similar to the solution of a functional predictor ridge regression
Bg = (fXJXJ + AnD)_l(fxly),

where D is a diagonal operator, diag((-)/||57]|). We can replace I'ysy by the following
expression, after adding and subtracting I'y xs (87).

Bn‘] = (ijXJ —I—)\nD)_l(foXJﬂJ‘f'f‘Xe% (25)

where I'x, is the empirical covariance operator between observed functional data X

and the population error, e =Y — (X, 3) =Y — (X7 37). D is a self-adjoint operator,

and ||37]|,, # 0 for all j € J by the definition of the population active set J. This
means there are positive constants D, = 1/maJx 187 |5 and Diax = 1/r_ni51 187 ||
JE j€

such that Dyax %= D %= Dpinl. The closed-form solution (25) can be broken down
into multiple terms. One of the terms is

(Cxsx7 + D) (T'xo)- (26)
Applying the same technique in the proof of Lemma 8 and using the result of Lemma
4, we can see that | xsxs + A D7 |5 < DL A1 and

(Txsx7s +AD)H(Txe) = Op(n~ /2001,
Hence, we have
B =B = Cxsxs + D) (TxsxsB8” +Txe) — B/
=Txsxs + D) M Txsxs87) = Cxrxs +MD) ' Txsxs 87 (27)
+ (Txoxs + AD) Txoxsp) = B+ 0p(n~ 12N

The first two terms of the last equation in (27) is O,(n~*/2\!) by Lemma 8. By
using (Cxsxs + AD) Txsxs =1 — A\(Txsxs + A D)71D, we can simplify the
third and fourth terms of (27) as

(Cxsx7 +AD) Wxixsp? — 7 = (~\(Txsxs + A\D)1D)B7. (28)
Consequently, we have
Bl = B = (~Aa(Txoxs + D)7 D)B7 + Oy (™12 (29)

Now, we show the norm of A\, (I'xsxs + A\, D)"1D is Op(vV A, +n 72001, Let

h’ € H’ be the element in the assumption such that 37/ = Fi(/?XJhJ. Then,

[An(Cxoxs + X D) DB 3,0 = A2(B7, D(Txsx7 + A D) "2DB7 )3y
< >‘2 D12nax<ﬁj7 (FXJXJ + >\aninI)72/8J>HJ
< AD2 L Dt (87, (Cxoxs 4 AnDminl) ™' 87) 300
= A, D2, DL (V2 7 (Cxoxs 4 AnDinl) "' T2

<>\ D12nax mm”h ||H
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The third line of the above equation is valid because
ITx7x7 + AnDminl ||%7 > ApDmin. Combining the results above, we have

”Br{ - BJHH = Op( V A+ n_1/2)\;1).

Now, let’s compare B;{ and B where 3/ is the solution to the optimization problem of
M, (a). Consider the following equation.

M, (a) — M, (a) = /\"Z <||aj||yj _ Nl ) . (30)

< 2[187 113

The partial Fréchet derivative of the equation (30) with respect to o for an i € J is

Do (M () = My(a)) = An (W“W o, >) | (31)

|3 18|94

Sinceﬁ‘] “are nonzero, (31) is continuously differentiable around B7, and
D,: M, (B;])) = 0, we have

<~;7'>Hi <~;7'>Hi

1Bl 18l

1Dai My (5;))) = 0]l = A

)

where the || - || is the operator norm. In addition, since 3¢ # 0 for i € J, it can be
easily shown that

1D M (5;7)) = Ollagi < CAnllB” = Byl [0
for some constant C' > 0. Thus, we have
HDaan(Br{))HHl = )‘nOp()Vlz/Q + n_1/2)\’l’_Ll)' (32)

Now, since M,, is strictly convex near the true 3”7, its second-order Fréchet derivative
has a lower bound. Consequently, we have

Mn(aj) > Mn(/ér{) + <DaJMn(/6~)r{)> (O‘J - B;{»?—H + C/)‘nHO‘J - B;{H%—LH

for some C’ > 0. Suppose that o is near 37 and let 7, = ||’ — B;{H%J which tends
to zero. Subsequently, we can rewrite the lower bound such that

My (a”) > Mo (B]) + 1A Op (VA + 072000 + G/ A2, (33)

If the last term is tending to zero slower than the second term, we can conclude that
all minima of M, (-) are inside the ball {a” : ||a’ — B;{Hg_” < n} with probability
tending to one. This is because M,(-), on the edge of the ball, takes values greater the
ones inside the ball. i.e., the global minimum of M, (-) is at most 7, away from 3.
Thus, the necessary condition for the proof is nn)\%/ 2= o(Ann?) and

n~Y2n, = o(\,n2). Alltogether, we have the consistency results if 7, converges to
zero slower than AY2 + n=2A O
Proof of Theorem 3. We rewrite the multivariate functional group LASSO objective
function (3) as,

R 1. . 1 . p )
My (a) = §FYY —TI'yxa+ §<Oé, Pxxa)y + An Z lla? |23 -

Jj=1

March 20, 2022

5/8

62

63

64

65

66

67

68



Denote a minimizer of M,,(-) by £,. Since it is a convex function, it has a unique
minimizer. In addition, if \,, goes to zero, the objective function converges to the
regression problem without the penalty whose unique minimizer is 8. Thus, it is easy
to see that J = {j : 47 (-) # 0} converges to J via the M-estimation theory. See [2]
and [3].

Now, we extend 3; in Lemma 5 with zero functions as 3¢, for i € J¢, name it
Bn € H. Note that, it is a consistent estimator of 8 by Lemma 5. Since both of the
M, (-) and Mn() have unique minimizers and the 3,, is a consistent estimator of 3, the
consistency of Bn can be shown, if we can show that (,, satisfies the optimal conditions
for M, (-) with a probability tending to one. The (asymptotically) optimal conditions
of M,(-) are

A

(Pxixa, )i —Tyxi(c) = *W@ﬂv Vi JEJ

The second equation is immediately satisfied with o = f3,,, since it satisfies the KKT
condition for M, (-). We focus on the above inequality of the optimal condition. The
first derivative condition for minimizing M,,(-) implies that 8; should justify the
following equation

. . J N
—FYXJ(-)+<FXJXJB;{,->HJ+/\n <ﬁnj’7>ﬂ =0
2 80

Define D,, be an operator from H” to H” such that D, (a”’) = diag(a?/||B]) for
j € J. We rewrite the above equation as

Ty xs() +{(Cxsx7 +AaDy)BL, Yos = 0.
In addition, note that
Ty xs() = Cxoy,)or = (Cxoxs B+ Txe, Yo
Thus, we have
Byl ) = ((Cxoxs + D) (Cxoxs B +Txre), Do
Furthermore, by using a similar technique used in (28),
(Cxoxr +MDn) TxsxsB) =87 = Cxsxs 4+ MDn) A Dp 37
Thus, for an i € J¢:
Iyiy —DxixsB) =Txiy = TxixsB7 + ML xixs (D xoxo + AnDn) ' D87
—Tyixs(Dxrxs 4+ AnDp) Ty,

== )\nf‘szJ (fXJXJ + )\nDn)ianﬁJ + ine
—Dxixs(Dxoxs +AaDp) Tx,

by using the fact that I'yiy — f‘XixJ(BJ) = I'yi.. At this point, the formulation has a
similar form, derived in Theorem 11 of [1]. Furthermore, Lemma 5 satisfies the
condition that is necessary to derive the rest of the proof so that they can be derived
similarly. O
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3 Rregions of Interests

List of regions of interests: The following are the lists of the regions of interest of
the human brain used in the application section 8. The atlas labels of the human
brain and full names can be found at Atlas Label.

The list of the regions of interest associated with the active set of MFG-Lasso when the

response value is IQ score:

?Frontal-Mid—Orb-L”, ”Frontal-Mid—Orb-R”, ”Frontal-Inf-Oper-L”,
?Frontal-Inf-Oper-R”,”Frontal-Inf-Tri-L”, "Frontal-Inf-Tri-R”,
?Frontal-Inf-Orb—L”,”Frontal-Inf-Orb—R”, "Rolandic-Oper—R”, "Supp—Motor—Area—L”, ”Olfactory—L”,
?Olfactory—R”, ”"Frontal-Sup—Medial-L”,”Frontal-Med—Orb—L”, "Frontal-Med—Orb—-R”, "Rectus—L”,
?Cingulum—-Ant-L”, "Cingulum—Post-L”, ?Cingulum-Post-R”, ”Amygdala-L”, ”Amygdala-R”,
?Calcarine-L”, "Calcarine-R”, "Cuneus-L”, ?Cuneus-R”, ”"Lingual-L”, ”Occipital-Sup-L”,
?Occipital-Sup—R”, ”Occipital-Mid-R”, ”Occipital-Inf-L”, ?Occipital-Inf-R”, "Parietal-Sup-L”,
?Parietal-Inf-R”, "SupraMarginal-L”, ”SupraMarginal-R”, ”Angular-L”, ”Angular-R”, ”Precuneus—L”,
?Paracentral-Lobule-L”, "Paracentral-Lobule-R”,”Putamen—L”, ”"Pallidum—R”, "Heschl-R”,
?Temporal-Sup-L”, "Temporal-Pole-Mid-L”, ”Cerebellum—-3-L", ”Cerebellum—-3-R”, "Vermis—1-2",
”Vermis—3”, ”Vermis—4-5”, "Vermis—6", ”Vermis—9”, ”Vermis—10".

The list of the regions of interest associated with the active set of MFG-Lasso when the

response value is Verbal 1Q:

”Frontal-Sup—R”, "Frontal-Mid—Orb—L”,”Frontal-Mid—Orb—-R”,
?Frontal-Inf-Oper—R”,”Frontal-Inf-Tri—L”,”Frontal-Inf-Tri-R”,
?Frontal-Inf-Orb-L”,”Frontal-Inf-Orb-R”,”Rolandic-Oper—R”, "Supp—Motor—Area-L”,”Olfactory-L",
?Frontal-Sup—Medial-L” "Frontal-Med—Orb-L”,”Frontal-Med—Orb—R”,”Rectus—L”, ”Cingulum—Ant-L”,
?Cingulum—-Post-L”, "Cingulum—Post-R”, ”Amygdala-L”, ”Amygdala—R”, ”Calcarine-L”, ”"Calcarine-R”,
?Cuneus—L”, ?Cuneus—R”, "Occipital-Sup—L”, "Parietal-Sup—L”, "Parietal-Sup—R”, "Parietal-Inf-L”,
?Parietal-Inf-R”, "SupraMarginal-L”, "SupraMarginal-R”, ”Angular-L”, "Precuneus-L”, ”Precuneus-R”,
?Paracentral-Lobule-L”,”Paracentral-Lobule-R” ”Putamen—L”, "Pallidum—-R”, "Heschl-R”,
”?Temporal-Sup-L”, "Temporal-Pole-Mid-L”,”Cerebellum-3-L”, "Vermis—1-2”, ”Vermis—3”, ”Vermis—4-5",
?Vermis—6”, ”Vermis—9”, ”Vermis—10”, .

The list of the regions of interest associated with the active set of MFG-Lasso when the

response value is Performance 1Q:
?Frontal-Sup—Orb-L”,”Frontal-Mid-Orb-L”,”Frontal-Mid-Orb-R”,
?Frontal-Inf-Oper-L”,”Frontal-Inf-Oper—-R”,”Frontal-Inf-Tri-L”,
?Frontal-Inf-Tri—R”,”Frontal-Inf-Orb-L",”Frontal-Inf-Orb—R”, "Rolandic—Oper—R”,
?Supp—Motor—Area—L”,”Olfactory—L”, ”Olfactory—R”, "Frontal-Sup—Medial-L”,”Frontal-Sup—Medial-R”
?Frontal-Med—Orb-L”,”Frontal-Med-Orb-R”,”Rectus-L”, "Insula-R”, ?Cingulum—-Ant-L”,
?Cingulum—Mid-L”, ”Cingulum-Post-L”, ?Cingulum—Post-R”, "ParaHippocampal-L”,
?ParaHippocampal-R”,” Amygdala—L”, ”Amygdala—R”, ”Calcarine-L”, ”Calcarine-R”, "Cuneus—L"”,
?Cuneus—R”, "Lingual-L”, ”Occipital-Sup—L”, ”Occipital-Sup—R”, ”Occipital-Mid-L”, ”Occipital-Mid-R”,
?Occipital-Inf-L”, ?Occipital-Inf-R”, "Postcentral-L”, "Postcentral-R”, "Parietal-Sup—L”,
?Parietal-Sup—-R”, "Parietal-Inf-L”, "Parietal-Inf-R”, ”SupraMarginal-L”, "SupraMarginal-R”,
?Angular-L”, ”Angular-R”, ”Precuneus—-L”, ”Precuneus—R”, "Paracentral-Lobule-L”
?Paracentral-Lobule-R”,”Caudate-L”, "Putamen—L”, "Pallidum-R”, "Thalamus-L”, "Heschl-L”,
”?Heschl-R”, "Temporal-Sup—L”, "Temporal-Pole-Sup-L”, "Temporal-Pole-Sup—R”,”Temporal-Mid-L",
?Temporal-Pole-Mid—L”, ?Temporal-Pole-Mid—R”,”Cerebellum—3-L”, ”Cerebellum—-3-R”,
?Cerebellum—4-5-R”, ”Cerebellum—6-L", ”Cerebellum—6-R”, "Vermis—1-2”, "Vermis—3”, "Vermis—4-5",
”Vermis—6”, ”Vermis—7", "Vermis—9”, ”"Vermis—10".
The list of the regions of interest associated with the active set of MFG-Lasso when the

response value is ADHD score:

?Frontal-Mid—L”, ”"Frontal-Mid—Orb—L”,”Frontal-Mid—Orb-R”,
?Frontal-Inf-Oper—L”,”Frontal-Inf-Oper—R”,”Frontal-Inf-Tri-L”,
?Frontal-Inf-Orb-L”,”Frontal-Inf-Orb-R”,”Supp—Motor—Area—L”, ”Olfactory-L”,
?Frontal-Sup—Medial-L”,”Frontal-Sup—Medial-R” ”"Frontal-Med—Orb-L”,”Rectus—L”, "Cingulum—Ant—L”,
?Cingulum—-Post-L”, "ParaHippocampal-R”,” Amygdala—L”, ”Calcarine-L”, ”Cuneus-L”, ”Cuneus-R”,
?QOccipital-Inf-L”, ”Occipital-Inf-R”, "Parietal-Sup-L”, "Parietal-Inf-L”, "SupraMarginal-L”,
?SupraMarginal-R”, ”Angular-L”, "Angular-R”, ”"Precuneus-L”,
”Paracentral-Lobule-L”,”Paracentral-Lobule-R”,”Putamen-L”, "Heschl-R”, "Temporal-Sup-L”,
?Temporal-Pole-Sup—R”, "Temporal-Pole-Mid-L”,”Cerebellum-9-L”, ”Vermis—1-2”, ”"Vermis—4-5",
”Vermis—10".

The list of the regions of interest associated with the active set of MFG-Lasso when the

response value is ADHD Inattentive:
?Frontal-Mid—Orb-L”,”Frontal-Mid—-Orb—R”,”Frontal-Inf-Oper—L”,
?Frontal-Inf-Oper—R”,”Frontal-Inf-Tri-L”,”Frontal-Inf-Orb-L”,
?Frontal-Inf-Orb—R”,”Supp—Motor—Area—L”,”Frontal-Sup—Medial-L”
?Frontal-Sup—Medial-R”,”Frontal-Med—-Orb-L”,”Rectus-L”, ”"Cingulum—-Ant-L”, ”Cingulum-Post-L”,
?Cingulum-Post-R”, "ParaHippocampal-R”,” Amygdala-L”, ”Calcarine-L”, ?Cuneus-L”, "Cuneus-R”,

”Lingual-L”, ”Occipital-Inf-L”, ”Occipital-Inf-R”, "Parietal-Sup—L”, "Parietal-Inf-L”, ”SupraMarginal-L",

?SupraMarginal-R”, ”Angular-L”, "Angular-R”, "Precuneus—L”, "Precuneus—R”,
?Paracentral-Lobule—L”,”Paracentral-Lobule-R” "Heschl-R”, "Temporal-Sup—L”, "Temporal-Pole-Sup—R”,
?Temporal-Pole-Mid—L”,”Cerebellum—4-5-R”, ”Vermis—1-2”, "Vermis—4-5”, "Vermis—10".

The list of the regions of interest associated with the active set of MFG-Lasso when the

March 20, 2022

7/8

78

79

80

81

82

83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98
99
100
101
102
103
104
105
106

107

108
109
110
111
112
113
114
115
116
117
118
119
120

122
123
124

125

126
127
128
129
130

132
133
134
135
136

137

138
139
140

142
143
144
145
146
147

148


journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0088690.s001

response value is ADHD Hyper/Impulsive:
?Frontal-Mid—Orb-L”,”Frontal-Mid—Orb—R”,”Frontal-Inf-Oper—L”,
?Frontal-Inf-Oper—R”,”Frontal-Inf-Tri-L”,”Frontal-Inf-Orb-L”, ”Frontal-Inf-Orb-R”,”Rolandic-Oper-R”,
”Supp—Motor—Area—L”, ”Olfactory—-L”, "Frontal-Sup—Medial-L”,”Frontal-Sup—Medial-R”
?Frontal-Med—Orb—L”,”Frontal-Med—Orb—R”,”Rectus—L”, "Rectus—R”, ”Cingulum—Ant-L",
?Cingulum-Mid-L”, ”Cingulum—Post-L”, ”"ParaHippocampal-R”,” Amygdala-L”, ”Amygdala—R”,
?Calcarine-L”, "Cuneus—L”, "Cuneus—R”, ”Occipital-Sup—R”, ”Occipital-Mid-R”, ?Occipital-Inf-L”,
?Qccipital-Inf-R”, "Parietal-Sup-L”, "Parietal-Inf-L”, "Parietal-Inf-R”, ?SupraMarginal-L”,
?SupraMarginal-R”, ”Angular—L”, ”Angular-R”, "Putamen—L”, "Pallidum—R”, "Heschl-L”, "Heschl-R”,
?Temporal-Sup—L”, "Temporal-Pole-Sup—R”,
?Temporal-Pole-Mid—L”,” Temporal-Pole-Mid—R”,”Cerebellum—-3-R”, ”"Cerebellum—4-5-R”,
?Cerebellum—9-L”, ”"Vermis—1-2”, ”Vermis—3”, ”Vermis—4-5”, "Vermis—6”, "Vermis—7”, ”Vermis—10".
The list of the regions that are associated with 1Q but not with ADHD by the MFG-Lasso:
?Frontal-Inf-Tri-R”,”Rolandic-Oper—R”,”Olfactory—R”, "Frontal-Med-Orb-R”,”Cingulum—Post-R”,
?Amygdala—R”, ”Calcarine-R”, "Lingual-L”, ”Occipital-Sup—L”,”Occipital-Sup-R”,
”Occipital-Mid-R”,”Parietal-Inf-R”,”Pallidum-R”, ”Cerebellum-3-L”, ”Cerebellum-3-R”, "Vermis-3”,
”Vermis—6”, ”Vermis—9”,
The list of the regions that are associated with ADHD but not with IQ by the MFG-Lasso:
?Frontal-Mid-L”, ”"Frontal-Sup—Medial-R”,”ParaHippocampal-R”,”Parietal-Inf-L”,
?Temporal-Pole-Sup—R”,”Cerebellum—9-L".
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