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Slice Thickness Filter

In this work, we did not use a slice thickness (ST) filter to keep the high-frequency
components of the breast volume. When we used the ST filter, the high-frequency
components were reduced, as shown in Figure (b), which is typical for breast
tomosynthesis imaging. The ST filter is expressed as follows:
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where, fn is the Nyquist frequency, @ is the data acquisition angle, and ¢ was set to 0.4
as a multiplicative factor.
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Fig 1. Frequency domain analysis. Frequency responses of DBT images using
FDK (a) without and (b) with the ST filter for f, — f, plane (Top), f. — f. plane
(middle), and f, — f, plane (bottom). The display window is [1 4].
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Phase 1 CNN

Batch normalization

We did not use the normalization layer because the batch normalization layer may
degrade convolutional neural network (CNN) performance when the mini-batch size is
small . We conducted network training with and without the normalization layer,
and the results are presented in Figure [2] Our network is trained more stably when the
batch normalization was excluded.

Filter number

We selected the filter number experimentally to achieve the best performance without
sacrificing training efficiency. As depicted in Figure [3] validation loss converges when
the number of filters is greater than 40. The validation loss converged to 0.0046 after 30
epochs with 40 and 48 filters. We also found that a network with 64 filters requires
more training datasets for convergence.

Phase 2 CNN

We adopted the U-Net in phase 2, because it contains a large receptive field size to
cover the length of PSF in the DBT system, which is a key aspect of the proposed
method. When we used REDCNN or ResNet in phase 2, the performance of the
deblurring was not effective compared to the case of U-Net as shown in Figure [4]
Quantitative results summarized in Tables[[]and [2] also confirm these observations.
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Fig 2. Training and validation loss in Phase 1. Training and validation loss in
Phase 1 (a) with and (b) without the batch normalization layer.
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Fig 3. Filter numbers in Phase 1. Training and validation loss in Phase 1 when (a)
32 filters, (b) 40 filters, and (c) 48 filters are used.
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Fig 4. Results for various Phase-2 CNN. Deblurred images by the proposed
method with REDCNN, ResNet, U-Net in Phase 2, and CBCT images (from left to
right). Images without mass lesion for (a) axial, (b) coronal, and (c) sagittal planes;
images containing 4 mm lesions for (d) axial, (e) coronal, and (f) sagittal planes, and
images containing 2 mm lesions for (g) axial, (h) coronal, and (i) sagittal planes. The

display window is [0.03 0.10] in em ™.

Table 1. MSE and GRMSE results for various Phase-2 CNN.
(mean+standard deviation)

MSE (x107°) GRMSE (x1072)

Method Axial Coronal Sagittal Axial Coronal Sagittal

U-Net 7.09 £ 0.78 8.28 +£1.32 7.56 £ 1.20 0.59 + 0.01 0.59 + 0.01 0.64 £+ 0.01
REDCNN 7.50 £ 0.61 10.05 £ 1.48 9.01 +£1.22 0.69 £ 0.01 0.69 &+ 0.01  0.77 & 0.02
ResNet 7.50 £0.60 9.97£150 887+121 0.70+£0.01 0.70 £ 0.01 0.79 &£ 0.02
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Table 2. CNR results for various Phase-2 CNN. (mean+standard deviation)

Contrast-to-Noise Ratio

Method Axial Coronal Sagittal

U-Net 2.91 £+ 0.79 2.42 + 0.76 2.67 + 0.73
REDCNN 2.78 £ 0.77 2.42 + 0.70 2.59 + 0.88

ResNet 2.83 £ 0.83 2.38 £ 0.67 2.62 + 0.88
Generalizability

To examine the generalization performance of the proposed algorithm, we generated
30% volumetric glandular fraction (VGF) DBT volume acquired over the ranges of
—40° to 40° and —10° to 10° for the same breast volume. These two volumes were
deblurred by the CNN pretrained with the DBT volume acquired over the range of
—20° to 20° and the corresponding cone-beam computed tomography (CBCT) volume
pair. Figure [b| compares the deblurred images of the DBT volume for different data
acquisition angles. The generalization performance is much better for the larger data
acquisition angle (i.e., —40° to 40°). Because the primary role of the proposed method
is to fill in the missing data for the DBT volume in the frequency domain (or
equivalently, deblurring in image space), the generalization performance of the CNN for
the DBT volumes acquired over —10° to 10° data acquisition angles is worse because it
contains much more missing data in frequency space. The quantitative results in
Tables 3] and H also confirm these observations.

Further clarification

To the best of our knowledge, there have been no studies on 3D deblurring of DBT
images using CNN yet. Instead, the PSF deblurring method based on iterative blind
deconvolution (i.e., PSF deblur) [3] was compared with the proposed method (i.e.,

Table 3. MSE and GRMSE results of the DBT images with different data
acquisition angles. (meantstandard deviation)

MSE (x107°) GRMSE (x1072)

Method Axial Coronal Sagittal Axial Coronal Sagittal

—40° ~ 40° PLMAE 4.86 + 0.66 6.66 + 0.97 5.38 + 1.10 0.56 + 0.01 0.52 + 0.02 0.59 + 0.02
—10° ~ 10° PLMAE 12.77 4+ 1.47 16.21 4+ 2.35 14.16 + 2.14 0.63 £ 0.01  0.60 £ 0.02  0.67 £ 0.02

—40° ~ 40° FDK 16.54 + 2.49 0.68 £+ 0.03
—40° ~ 40° FDK 78.40 £+ 13.16 1.63 + 0.14

Table 4. CNR results of the DBT images with different data acquisition
angles. (mean+tstandard deviation)

Contrast-to-Noise Ratio

Method Axial Coronal Sagittal
—40° ~ 40° PLMAE 2.87 + 1.04 3.06 + 0.99 3.39 + 1.40
—10° ~ 10° PLMAE 1.76 + 0.59 1.46 + 0.75 1.37 + 0.78
—40° ~ 40° FDK 1.77 £ 0.42
—10° ~ 10° FDK 0.81 4+ 0.36
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Fig 5. Results with different data acquisiton angle. Comparison of DBT images
reconstructed by FDK over —40° to 40° and —10° to 10° data acquisition angles with
deblurred images by the proposed method. CBCT images are shown as a reference.
Images without mass lesion for (a) axial, (b) coronal, and (c) sagittal planes; images
containing 4 mm lesions for (d) axial, (e) coronal, and (f) sagittal planes, and images
containing 2 mm lesions for (g) axial, (h) coronal, and (i) sagittal planes. The display
window is [0.03 0.10] in em ™1,

PL-MAE). Among the several methods proposed in the PSF deblurring method ,
method 3, which had significantly improved SSIM with the reference image, was
quantitatively compared with the proposed method. As illustrated in Figure [f] the
image reconstructed by the PSF deblur method was not significantly different from the
image reconstructed by the FDK. As shown in Table[6] the image deblured by the PSF
deblur method slightly increased the CNR of 4 mm lesions compared to the image
reconstructed by FDK, similar to the result of the previous study . However, as
shown in Table [5) the MSE and GRMSE between the PSF deblurred image and the
reference image were increased compared to the image reconstructed by the FDK due to
the increased noise level. These results demonstrate that our proposed method showed a
higher performance than the PSF deblur method.
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Fig 6. Results for further clarification. Comparison of DBT images reconstructed
by FDK, deblurred images by PSF deblur method, deblurred images by the proposed
method with PL-MAE loss function, and CBCT images (from left to right). Images
without mass lesion for (a) axial, (b) coronal, and (c) sagittal planes; images containing
4 mm lesions for (d) axial, (e) coronal, and (f) sagittal planes, and images containing 2
mm lesions for (g) axial, (h) coronal, and (i) sagittal planes. The display window is
[0.03 0.10] in em™1.
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Table 5. MSE and GRMSE results of the DBT images reconstructed with
FDK, deblurred images by PSF deblur method, and deblurred images by
the proposed method with PL-MAE. (mean+standard deviation)

MSE (x107°) GRMSE (x1072)

Method Axial Coronal Sagittal Axial Coronal Sagittal

PSF deblur 43.33 £+ 13.3 55.87 £ 18.64 55.13 £ 17.56 1.11 £+ 0.07 0.94 £ 0.07 0.80 £ 0.08
PL-MAE 8.90 + 1.30 10.02 + 2.15 9.62 £+ 2.06 0.59 £+ 0.01 0.55 + 0.01 0.64 £ 0.02

FDK 41.09 £ 5.56 1.07 + 0.06

Table 6. CNR results of the DBT images reconstructed with FDK,
deblurred images by PSF deblur method, and deblurred images by the
proposed method with PL-MAE. (meantstandard deviation)

Contrast-to-Noise Ratio

Method Axial Coronal Sagittal
PSF deblur 1.31 £ 0.69 1.63 £ 0.65 1.75 £ 0.67
PL-MAE 3.24 + 0.75 2.98 + 1.05 3.19 + 1.00
FDK 1.14 £+ 0.57

Clinical Data

To verify that the proposed algorithm is effective for real imaging data, we used clinical
chest data provided by the NIH clinical center. Table |[7| summarizes the details of the
simulation parameters. We observed that the proposed method performs effective 3D
deblurring, significantly reducing the blurring artifacts in the in-focus plane and the
other planes of the real imaging data. Quantitative results summarized in Table [§] also
confirm these observations.

Table 7. Clinical Data Simulation Parameters.

Parameters CBCT DBT
Source to iso-center distance 800 mm
Detector to iso-center distance 400 mm
Data acquisition angle —180° ~ 180° —45° ~ 45°
Number of views 360 91
Detector cell size 0.776 x 0.776 mm?
Detector array size 768 x 512

Reconstructed volume size  264.9 x 264.9 x 264.9 mm?3
Reconstructed voxel size 0.517 x 0.517 x 0.517 mm?3
Reconstruction algorithm FDK
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Fig 7. Results with clinical data. NIH chest images reconstructed with FDK and
TV-IR, deblurred images by the proposed method with PL-MAE loss function, and
CBCT images (from left to right) for (a) axial, (b) coronal, and (c) sagittal planes. The
display window is [-450 450] in Hounsfield unit (HU).

Table 8. MSE and GRMSE results of the clinical DT images reconstructed
with FDK, deblurred images by PSF deblur method, and deblurred images
by the proposed method with PL-MAE. (meantstandard deviation)

MSE (x10%) GRMSE

Method Axial Coronal Sagittal Axial Coronal Sagittal

PL-MAE 0.56 £+ 0.23 0.87 £+ 0.35 0.92 + 0.25 27.83 + 5.67 37.84 + 8.14 43.14 + 7.48

FDK 13.13 £+ 6.74 31.64 + 7.53
TV-IR 1.88 + 0.96 36.04 + 8.27
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