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TCGA bulk tumour subtype annotations

The TCGA bulk tumour subtype annotations were collected
from literatures listed in Table 1

Table 1. Subtype labels for 10 TCGA bulk tumours annotated from
literatures.

TCGA code study name reference

BRCA Breast invasive carcinoma [1]
COADREAD Colon adenocarcinoma [2]
ESCA Esophageal carcinoma [3]
HNSC Head and neck squamous cell carcinoma [4]
LUAD Lung adenocarcinoma [5]
LUSC Lung squamous cell carcinoma [6]
PAAD Pancreatic adenocarcinoma [7]
SKCM Skin cutaneous melanoma [8]
UCEC Uterine corpus endometrial carcinoma [9]
GBMLGG Glioblastoma multiforme and lower

grade glioma
[10]

Bulk tumor molecular data processing

Copy number, gene expression and mutation data from bulk
tumours for 10 cancer types listed in Table 1 in the main text
were obtained from Firehose Broad GDAC portal
(http://gdac.broadinstitute.org/). Copy number Log2 ratio
segment data genome were input into GISTIC2.0 (version
2.0.23) [11] to obtain thresholded CNV values. These data
were dichotomised and stored in a sample by gene binary
matrix, where 0 indicates a diploid copy number level and 1
indicates one of the following CNV levels: homozygous
deletion, heterozygous deletion, low-level amplification,
high-level amplification.

RSEM normalised gene expression data were preprocessed
as follows: genes with missing values in more than 20% of the
samples were excluded. For the remaining genes, missing
values were imputed using impute.knn function from impute

package [12]. The resulting gene expression values were
transformed by adding 1.0 to each value and taking the
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logarithm (pseudo-log-transformation).
Mutation data were downloaded as MAF files and

synonymous mutations were excluded. The single-sample
MAF files were further aggregated into a binary matrix M ,
with entries (M)i,j = 1 indicating that there is a
nonsynonymous mutation at j in patient i.

Cell line molecular data processing

Cell line data for the same cancer types in Table 1 in the
main text were downloaded from the CCLE portal
(https://portals.broadinstitute.org/ccle) and processed in the
same way as bulk tumours, except that ensemble ids were
mapped to gene symbols using human genome Genecode V19.

Molecular data normalisation

All molecular data input into MFmap neural network are
normalised to the 0− 1 range.

Bulk tumor clinical data

Multiple subtype classification schemes for TCGA BRCA,
COADREAD and GBMLGG exist and we decided to follow
the most frequently used schemes. COADREAD has four
consensus molecular subtypes CMS1-4 obtained from gene
expression data [13]. GBMLGG [10] has seven subtypes
(IDHmut-codel or Codel, G-CIMP-low, G-CIMP-high,
Classic-like, Mesenchymal-like, LGm6-GBM, PA-like) which
were derived from multi-modal data sets including mutation,
methylation and gene expression patterns. BRCA subtypes
(Basal, Her2, Luminal A, Luminal B, and Normal) are based
on PAM50 (Prediction Analysis of Microarray using 50 gene
set) [14] features derived from gene expression data and
obtained from [1]. In our study, only Basal, Her2, Luminal A,
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Luminal B samples were kept. The subtype annotations of
all studied cancer types listed in Table 1 in the main text can
be found in Table 1.

Cell line drug sensitivity data

CCLE cell line sample annotation data were obtained from
CCLE portal and drug sensitivity data were downloaded
from the Cancer Therapeutics Response Portal (CTRP [15],
www.broadinstitute.org/ctrp).

Correcting for batch effects between bulk tumour
and cell line gene expression

Batch effects between bulk tumours and cell lines were
corrected by using the function Combat from the R package
SVA [16]. The label bulk tumour or cell line was used as the
covariate.

Handling class imbalance

Cancer subtype datasets especially GBMLGG are
unbalanced, which is a major reason of overfitting for
machine learning models. To overcome this issue, we applied
Synthetic Minority Over-sampling Technique (SMOTE) [17]
implemented in SmoteClassif function of UBL [18] R package
to oversample the minority subtypes, creating an equal
balance with majority subtypes.

Propagating copy number and mutation profiles on
the protein-protein interaction network

Mutation profiles were mapped to human cancer network A
curated by pyNBS [19] as protein-protein interaction network
(PPI) source, which aggregates different interaction types.
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The propagating function in pyNBS with optimal signal
diffusion distance parameter setting α = 0.7 was applied to
perform network propagation, described by the iterative
process xt+1 = αxtA+ (1− α)x0 with a closed solution
x∞ = (1− αA)−1x0. Here x0 is the sample-by-gene matrix, A
is the adjacency matrix of the PPI, and α is the parameter
controlling the diffusion distance. The same approach was
used for dichotomised copy number profiles. The smoothed
copy number profiles and mutation profiles (sample by gene
matrices) were combined into a single DNA-view matrix.

Pathway activity scores

Gene expression data for MsigDB [20] gene sets were input to
ssGSEA [21], which outputs sample-wise pathway activity
scores.

Biological annotation of latent representations

For a given componet zk of the latent representation, we
selected all pathways whose activities are significantly
associated with zk (association was measured using the
information coefficient, FDR threshold of 5%). Some
pathways are associated with more than one latent
representation. To resolve these ambiguities, the Pearson
correlation coefficients were estimated as well. The selection
of pathways was further refined by using the fold change of
zk intensities between subtypes with the highest two latent
representations and the lowest two latent representations.
Here fold change and significance were estimated by a linear
model implemented in the limma package [22], only those
pathways with FDR adjusted p-value less than 0.05 were
further kept for human review.
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Generating MFmap visualisations

Let Z = (zij) be the n× h-matrix of latent representations.
The element zij is the value of the latent representations
j ∈ {1, . . . , h} for patient i ∈ {1, . . . , n}. The MFmap
visualisation proceeds in three steps:

Step 1: Generate coordinates C1j, C2j of the MFmap prominent
component nodes j by projecting the columns of matrix
Z to 2-D space. The projection is chosen in order to
preserve the distances between samples (Sammon
projection). Delaunay triangulation on the 2-D
coordinates is used to connect neighbouring nodes.

Step 2: Project samples onto the MFmap layout. The
coordinates (S1i, S2i) of sample i ∈ {1, . . . , n} are given as

Sli =
1∑h

j=1 z
α
ij

h∑
j=1

Cljz
α
ij, l = 1, 2 (1)

where α is a tuneable hyper-parameter controlling the
distance between nodes.

Step 3: Generate MFmap contour lines and background colours
based on the estimated sample density of each subtype.
The density is obtained from a Gaussian kernel density
estimate on the coordinate lattice corresponding to the
projected MFmap latent representations. The probability
estimate for the subtype with the highest probability is
then used for MFmap visualisation.

In-silico perturbation analysis

Let z
(s)
i denote the latent space representation of a tumour

sample or cell line i with subtype s. An in silico latent
sample z̃i = z

(s)
i + δ is obtained by adding the latent space

perturbation δ. Then, the artificial data point x̃i is sampled
from the decoder x̃i ∼ p(x|z̃i). For Fig 8 in the main text we

December 2, 2021 6/16



used the s = G-CIMP-high as the subtype of the original
data. The perturbation δ = z̄(s) − z̄(s′) with
s′ = Mesenchymal-like was obtained as the difference
between the mean latent space vectors of both subtypes.

Design of MFmap neural network

The MFmap encoder network

The encoder receives a gene expression profile xrna and a
propagated DNA alteration profile xdna as input. Two
hidden layers first encode the two input layers into two
1024-dimensional latent vectors. The second hidden layer
then concatenates the two 1024-dimensional latent vectors
and then is further encoded into 512-dimensional vector by
the third hidden layer. The third hidden layer is fully
connected to two output layers representing mean µ and
log-transformed variation logσ2 of qφ(z|x). The dimension of
the latent representation z is set as the number of subtypes
of cancer. The encoder is given by the following equations:

x1
erna

= ReLU(W 0
erna
· xrna + b1erna) (2)

x1
edna

= ReLU(W 0
edna
· xdna + b1edna) (3)

x2
e = ReLU(W 1

e · x1
erna
⊕ x1

edna
+ b2e) (4)

x3
e = ReLU(W 2

e · x2
e + b3e) (5)

µ = ReLU(W µ
e · x3

e + bµ) (6)

log(σ2) = ReLU(W σ
e · x3

e + bσ) (7)

where W 0
erna
∈ Rkrna×h1rna,b1erna ∈ R1×h1rna,

W 0
edna
∈ Rkdna×h1dna,b1edna ∈ R1×h1dna,

W 1
e ∈ Rh1rna+h

1
dna×h2,b2e ∈ R1×h2, W 2

e ∈ Rh2×h3,b3e ∈ R1×h3,
W µ ∈ Rh3×m,bµ ∈ R1×m W σ ∈ Rh3×m,bσ ∈ R1×m are trainable
parameters of the encoder network. Rectified linear unit
(ReLU) activation is defined as ReLu(x) = max(x, 0). ⊕
denotes concatenating two matrices.
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The MFmap decoder network

The MFmap decoder layer structure is symmetric to the
encoder with latent representations z as inputs and
reconstructed data as outputs x′rna and x′dna:

x1
d = ReLU(W 0

d · z + b1d) (8)

x2
d = ReLU(W 1

d · x1
d + b2d) (9)

x3
drna

= ReLU(W 2
drna
· >h1rna(x2

d) + b3drna) (10)

x3
ddna

= ReLU(W 2
ddna
· ⊥h1dna(x2

d) + b3ddna) (11)

x′rna = σ(W o
rna · x3

drna
+ borna) (12)

x′dna = σ(W o
dna · x3

ddna
+ bodna) . (13)

Here, W 0
d ∈ Rm×h3,b1d ∈ R1×h3, W 1

d ∈ Rh3×h2,b2d ∈ R1×h2,
W 2

drna
∈ Rh2×h1rna,b2d ∈ R1×h1rna, W 2

ddna
∈ Rh2×h1dna,b2d ∈ R1×h1dna,

W o
rna ∈ Rh1rna×krna,borna ∈ R1×h1rna,

W o
dna ∈ Rh1dna×kdna,bodna ∈ R1×h1dna are trainable parameters of

the decoder network. The sigmoid activation is defined as
σ(x) = 1

1+e−x . The subsetting operation of the top and
bottom j elements of x is denoted by >j(x) and ⊥j(x),
respectively.

The MFmap classifer network

The classifier serves as a regulariser controlling the capability
to learn a latent representation that is cancer subtype
relevant. Since cancer subtypes are clinically and biologically
meaningful, a higher classification accuracy will encourage
the neural network to extract features essential to patients
stratification and are more interpretable. The classifier is a
neural network with three fully connected layers and takes
the expectation µ (see Eq (6)) of the distribution p(z |x)
with x = (xrna,xdna) as input and outputs a probability for
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each of the h subtypes:

x1
c = ReLU(W 0

c · µ+ b1c) (14)

x2
c = ReLU(W 1

c · x1
c + b2c) (15)

xo = softMax(W o
c · x2

c + boc), (16)

where W 0
c ∈ Rm×h1c ,b1c ∈ R1×h1c , W 1

c ∈ Rh1c×h2c ,b2c ∈ R1×h2c ,
W o

c ∈ Rh2c×s,boc ∈ R1×s are trainable parameters of the
classifier. The softmax activation is defined as
softMax(x, y = c) = exc∑C

j=1 e
xj

, given the inputs and label pair

(x, y = c).

Details of the MFmap hidden layers

Each hidden layer is a block containing a fully connected
layer, a batch normalisation layer and an activation.

Details of the MFmap loss function

The MFmap loss function in Eq (10) in the main text for the
specific distributional assumptions can be rewritten as{
S(x, y) =

∑
v∈{rna,dna}Lrecon(xv, x̂v) +DKL(N (µ,σ) ‖ N (0, I)) + LCE(y, ŷ) +H(ŷ), (x, y) ∈ Dtu,

U(x) =
∑

v∈{rna,dna}Lrecon(xv, x̂v) +DKL(N (µ,σ) ‖ N (0, I)) +H(ŷ), x ∈ Dcl.

(17)

In Eq (17), µ, σ are estimated parameters of MFmap
encoder. ŷ denotes the subtype label probability predicted by
the MFmap classifier and Lrecon, DKL, LCE, and H denote
the reconstruction loss, KL divergence, cross entropy loss and
entropy, respectively. We next detail each term.

The reconstruction loss Lrecon is quantified by the binary
cross entropy loss between input data x and reconstructed
data x̂:

Lrecon(x, x̂) = −
d∑
i=1

xi log(x̂i) + (1− xi) log(1− x̂i). (18)
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The classification loss for sample i is implemented as a cross
entropy loss

LCE(y(i), ŷ(i)) = −
h∑
k=1

y
(i)
k log(ŷ

(i)
k ). (19)

The entropy of sample i is implemented as

H(ŷ(i)) = −
h∑
k=1

ŷ
(i)
k log(ŷ

(i)
k ). (20)

In Eq (19) and Eq (20) ŷ
(i)
k = softMaxk(c(x

(i); θ)), where
c(·) = (c1(·), . . . , ch(·)) is the classification model
parametrised by θ, and softMaxk is the softmax function for
subtype label k.

In fact, for bulk tumours the MFmap loss function can be
viewed as a basic VAE loss plus an entropy regularised
classification loss which is equivalent to a modified soft
bootstrapping loss proposed by [23] for positive unlabelled
learning, extended to multi-class case. It updates the
prediction objective based on currently predicted subtype
probability. Concretely, the modified soft bootstrapping loss
for a pair of feature and subtype label (x(i), y(i)) is:

lsb(x
(i), y(i); θ) =


− log(softMax1(c(x

(i); θ)))−
∑h

k=1 softMaxk(c(x
(i); θ)) log(softMaxk(c(x

(i); θ))), y(i) = 1,
...

− log(softMaxh(c(x
(i); θ)))−

∑h
k=1 softMaxk(c(x

(i); θ)) log(softMaxk(c(x
(i); θ))), y(i) = h.

(21)

Gradients of the MFmap loss function can be computed
with the reparametrisation trick [24], which involves sampling
a random vector ε ∼ N (ε|ε;0, I) and transforming to

z = µ(x) + σ(x)� ε. (22)

This ensures that z ∼ q(z|x) = N (z|µ(x), diag(σ)2).
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Details of the MFmap implementation and training
process

The MFmap neural network was implemented using PyTorch
(version 1.5.0) and trained on two NVIDIA Tesla V100 SXM2
GPUs (each has memory of 32 gigabytes) using the Adam
optimiser [25]. The preprocessed data were randomly split
into training (90%) and test (10%) sets. Hyperopt [26] was
used to search the best model avoiding overfitting by
selecting optimal hyper-parameters yielding the minimum
total loss divergence between training and validation datasets
(ratio training/validation data 9/10). The searching space for
hyper-parameter selection is:

• dimensions of first DNA or RNA encoder hidden layer
{4096, 2048, 1024}

• dimensions of second DNA or RNA encoder hidden layer
{1024, 512, 256}

• dimensions of third DNA or RNA encoder hidden layer
{256, 128, 64}

• dimensions of first classifier hidden layer
{512, 256, 128, 64}

• dimensions of second classifier hidden layer {128, 64, 32}

• batch size {64, 32}

• learning rate {10−4, 10−3, 10−2}

The optimised setting found from the minimal validation loss
is: learning rate as 10−3; batch size as 32; first, second and
third encoder hidden layer dimension as 1024, 512, 256
respectively; first, second classifier hidden layer dimension as
128, 64 respectively. These hyper-parameters were used for
all cancer types in Table 1 in the main text.
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Derivation of the unsupervised and supervised ELBO

We first derive the ELBO for cell line data using Jensen’s
inequality:

log p(x) = log

(∑
y

∫
dz q(z|x)

p(x, y,z)

q(z|x)

)

= log

(
Eq(z|x)p(y|z)

[
p(x|z)p(z)

q(z|x)

])
≥ Eq(z|x)p(y|z)

[
p(x|z)p(z)

q(z|x)

]
= Eq(z|x) [log p(x|z)]−DKL (q(z|x)||p(z)) .(23)

Here, we have used the conditional independence
assumption Eq (3c) in the main text and p(y|z) = q(y|z).
Similarly, for the labelled examples (bulk tumor samples), we
can derive the ELBO for the log-likelihood as

log p(x, y) = log

(∫
dz q(z|x)

p(x, y,z)

q(z|x)

)
≥ Eq(z|x)

[
log

(
p(x|z)p(y|z)p(z)

q(z|x)

)]
= Eq(z|x) [log p(x|z)]−DKL (q(z|x)||p(z))

+Eq(z|x) [log p(y|z)] , (24)

where we have used the conditional independence of x and y

given z in both the generative and the inference model.
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