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Supplemental Section S1 Graph Correlation. The following presents a 507

quantification of deviations of generated connectomes from the reference execution, 508

similar to shown in Figure 1. However, in this case, the “percent deviation” measure 509

was replaced with the Pearson correlation coefficient. The correlations between observed 510

graphs (Figure 4) across each grouping follow the same trend to as percent deviation, as 511

shown in Figure 1. However, notably different from percent deviation, there is no 512

significant difference in the correlations between dense or sparse instrumentations. By 513

this measure, the probabilistic pipeline is more stable in all cross-MCA and 514

cross-directions except for the combination of sparse perturbation and cross-MCA 515

(p < 0.0001 for all; exploratory). 516

Fig 4. The correlation between perturbed connectomes and their reference.

Supplemental Section S2 Complete Discriminability Analysis 524

The complete discriminability analysis includes comparisons across more axes of 525

variability than the condensed version. The reduction in the main body was such that 526

only axes which would be relevant for a typical analysis were presented. Here, each of 527

Hypothesis 1, testing the difference across subjects, and 2, testing the difference across 528

sessions, were accompanied with additional comparisons to those shown in the main 529

body. 530

Subject Variation Alongside experiment 1.1, that which mimicked a typical 531

test-retest scenario, experiments 1.2 and 1.3 could be considered a test-retest with a 532

handicap, given a single aqcuisition per individual was compared either across 533
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The marked lack in drop-off of performance across these settings, inconsistent with 517

the measures show in Figure 1 is likely due to the nature of the measure and the 518

structure of graphs being compared. Given that structural graphs are sparse and 519

contain considerable numbers of zero-weighted edges, the presence or absense of edges 520

dominated the correlation measure where it was less impactful for the others. For this 521

reason and others [1], correlation is not a commonly used measure in the context of 522

structural connectivity, and thus this analysis was demoted to the supplement material. 523



Table 2. The complete results from the Discriminability analysis, with results reported
as mean ± standard deviation Discriminability. As was the case in the condensed table,
the alternative hypothesis, indicating significant separation across groups, was accepted
for all experiments, with p < 0.005.

Unscaled Reference Dense Perturbations Sparse Perturbations
Exp. Subj. Sess. Samp. Det. Prob. Det. Prob. Det. Prob.
1.1 All All 1 0.64± 0.00 0.65± 0.00 0.82± 0.00 0.82± 0.00 0.77± 0.00 0.75± 0.00
1.2 All 1 All 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.93± 0.02 0.90± 0.02
1.3 All 1 1 1.00± 0.00 1.00± 0.00 0.94± 0.02 0.90± 0.02

2.4 1 All All 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.88± 0.12 0.85± 0.12
2.5 1 All 1 1.00± 0.00 1.00± 0.00 0.89± 0.11 0.84± 0.12

3.6 1 1 All 0.99± 0.03 1.00± 0.00 0.71± 0.07 0.61± 0.05

subsamples or simulations, respectively. For this reason, it is unsurprising that the 534

dataset achieved considerably higher discriminability scores. 535

Session Variation Similar to subject variation, the session variation was also 536

modelled across either both or a single subsample in experiments 2.4 and 2.5. In both of 537

these cases the performance was similar, and the finding that sparse perturbations 538

reduced the off-target signal was consistent. 539

Fig 5. Scaling behaviour of the discriminability statistic with data duplication.
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Scaling of discriminability with N When samples were added to the dataset across 540

perturbed executions, the discriminability statistic inflated to a plateau even when no 541

information was added (e.g. the dataset was replicated). This effect is demonstrated for 542

the reference executions and is shown in Figure 5. As we can see, the reference 543

discriminability scores without data duplication (unscaled) were 0.64 and 0.65 for the 544

deterministic and probabilistic pipelines, respectively. After duplicating the dataset 20 545

times, matching the size of the 20-sample perturbed dataset, we can see that this 546

(scaled) score plateaus at 0.82 for both pipelines. For consistency, in the main body of 547

the text the reference execution performance was communicated as the scaled quantity. 548



modularity. When similarly evaluating these features from connectomes generated in the 567

sparse perturbation setting, no statistic was stable with more than 3 significant digits or 568

a false positive rate lower than nearly 6% (Figure 6D). The deterministic pipeline was 569

more stable than the probabilistic pipeline in this setting (p < 0.0001; exploratory). 570
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Supplemental Section S3 Univariate Graph Statistics 549

550

551

552

553
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Figure 6 explores the stability of univariate graph-theoretical metrics computed from
the perturbed graphs, including modularity, global efficiency, assortativity, average path
length, and edge count. When aggregated across individuals and perturbations, the
distributions of these statistics (Figures 6A and 6B) showed no significant differences
between perturbation methods for either deterministic or probabilistic pipelines,
consistent with the comparison of the cumulative density of the multivariate statistics
compared in Fig 2. 556
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However, when quantifying the stability of these measures across connectomes
derived from a single session of data, the two perturbation methods show considerable
differences. The number of significant digits in univariate statistics for dense
perturbation instrumented connectome generation exceeded 11 digits for all measures
except modularity, which contained more than 4 significant digits of information
(Figure 6C). When detecting false-positives from the distributions of observed statistics
for a given session, the rate (using a threshold of p = 0.05) was approximately 2% for all
statistics with the exception of modularity which again was less stable with an
approximately 10% false positive rate. The probabilistic pipeline is significantly more
stable than the deterministic pipeline (p < 0.0001; exploratory) for all features except 566
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Two notable differences between the two perturbation methods are, first, the
uniformity in the stability of the statistics, and second, the dramatic decline in stability
of individual statistics in the sparse perturbation setting despite the consistency in the
overall distribution of values. This result is consistent with that obtained from the
multivariate exploration performed in the body of this article. It is unclear at present if
the discrepancy between the stability of modularity in the pipeline perturbation context
versus the other statistics suggests the implementation of this measure is the source of
instability or if it is implicit to the measure itself. The dramatic decline in the stability
of features derived from sparse perturbed graphs despite no difference in their overall
distribution both shows that while individual estimates may be unstable the comparison
between aggregates or groups may be considered much more reliable; this finding is
consistent with that presented for multivariate statistics. 582

Fig 6. Distribution and stability assessment of univariate graph statistics. (A, B) The
distributions of each computed univariate statistic across all subjects and perturbations
for dense and sparse settings, respectively. There was no significant difference between
the distributions in A and B. (C, D; top) The number of significant decimal digits in
each statistic across perturbations, averaged across individuals. The dashed red line
refers to the maximum possible number of significant digits. (C, D; bottom) The
percentage of connectomes which were deemed significantly different (p < 0.05) from
the others obtained for an individual.

1. H. Huang and M. Ding, “Linking functional connectivity and structural
connectivity quantitatively: a comparison of methods,” Brain connectivity, vol. 6,
no. 2, pp. 99–108, 2016.

Reference


	Blank Page



