
S1 Appendix. Speech signal features. Various speech features were extracted
that carry information about speaker identity, language, accent, various aspects of
affect, etc. It is a common method of reducing the dimension of a speech signal, while
maintaining the perceptive power of the signal. We denote xi(n), n = 1, ...,WL as the
sequence of audio samples of the ith frame, where WL is the length of the frame. A total
of 12 types of features were investigated in this study and can be subdivided as follows, 
Pitch

Pitch is defined as the rate of periodic vibration of the vocal cords and is also
referred to as the fundamental frequency. Detailed analysis of fundamental frequency
(f0) and its harmonics helps in understanding of emotion dependent pitch modulation
observed in expressive speech. The basic problem is to extract the f0 from a sound
signal, which is usually the lowest frequency component, or partial, which relates well to
most of the other partials. In a periodic waveform, most partials are harmonically
related, meaning that the frequency of most of the partials are related to the frequency
of the lowest partial by a small whole-number ratio. The frequencies ω = 2πf0 arek

referred to as the harmonics of wave, where k is the propagation constant. There are a 
lot of ways to estimate the pitch distribution, and in our case we calculated the 
autocorrelation function of the signal to estimate it [1]. The features, related to pitch 
distribution are described below.

� Fundamental frequency (f0) or pitch frequency

� Harmonics: 1-12 harmonics can be used. Changes in harmonics come from the
changing shape of the vocal folds during speech.

� Hamonic ratio: This is a measure of the harmonic to noise ratio, which provides 
an indication of the overall periodicity of the signal by quantifying the ratio 
between the periodic (harmonic) and the non-periodic (noise) part [2].

Temporal features
The time-domain features are



� Zero crossing rate: This is a measure of dominant frequency or the number of 
time domain zero-crossings within the speech frame, and is calculated as the rate 
of sign changes along each frame of the signal [3]. It is computed as,

Z(i) =
1

2WL

WL∑
n=1

|sgn[xi(n)]− sgn[xi(n− 1)]|,

where sgn(.) is the sign function.

� Energy : Short-time energy distinguishes voiced speech from unvoiced speech and
evaluates the amplitude variation and power of the signal for each frame. It is
calculated as,

E(i) =

WL∑
n=1

|xi(n)|2

� Energy entropy: This can be interpreted as a measure of abrupt changes in the 
energy level [4], which might correspond to reactions to something in the 
environment or conversation. We have used 100 milliseconds as a short term 
window to measure the entropy. It is calculated using the ratio of each sub frame 
(j) energy and the total energy of the frame.

ej =
EsubFramej
EFramei

The energy entropy is given by,

H(i) = −
k∑
j=1

ej · log2(ej)

Spectral features
These features are computed in the frequency-domain and they provide a convenient

representation of the distribution of the frequency content of the signal. In order to
proceed, let Xi(k), k = 1, ...,WFL, be the magnitude of the DFT coefficients of the ith
audio frame. The different frequency domain features are,

� Spectral centroid : This is a measure of the center of gravity of the spectrum of the
signal frame. A higher value of spectral centroid corresponds to a brighter sound. 
It is calculated as,

Ci =

WFL∑
k=1

kXi(k)

WFL∑
k=1

Xi(k)

� Spectral spread : This is the second central moment of the spectrum which
measures how the spectrum is distributed around its centroid which is commonly
associated with the bandwidth of the signal. Individual tonal sounds with isolated
peaks result in a low spectral spread, so its variation indicates various forms of
affect. It is calculated as,

Si =

WFL∑
k=1

(k − Ci)2Xi(k)

WFL∑
k=1

Xi(k)



� Spectral entropy: Similar to energy entropy, this computes the abrupt changes
in the spectrum [5]. We first divide the spectrum of the short-term frame into L
sub-bands (bins). The energy Ef of the fth sub-band, f = 0, ..., L− 1, is then

normalized by the total spectral energy, that is, nf =
Ef

L−1∑
f=0

Ef

, f = 0, ..., L− 1. The

entropy of the normalized spectral energy nf is finally computed according to the
equation,

H = −
L−1∑
f=0

nf · log2(nf )

� Spectral flux : This measures the spectral change between two successive frames
and is calculated as the squared difference between the normalized magnitudes of
the spectra of the successive frames [6]. It evaluates the temporal variation in 
speech. It is computed as,

Fl(i,i−1) =

WFL∑
k=1

(ENi(k)− ENi−1(k))2

where, ENi(k) is the kth normalized DFT coefficient of the ith frame.

� Spectral roll-off : It is defined as the frequency below which 90% of the spectral
distribution is concentrated [7]. It helps discriminating between voiced and 
unvoiced part of speech and studying its variation across time can capture
different aspects of emotions like stress, anger etc.

Cepstral features
Cepstral features are calculated by taking the inverse fourier transform of the

logarithm of the estimated spectrum of the signal. The power cepstrum has been used
widely for speech analysis.

� Mel-frequency cepstrum coefficients (MFCC): These are perhaps the most popular 
features that has been used successfully in speech emotion recognition
problems [8,  9]. It is a type of cepstral representation of signal, where frequency 
bands are distributed according to the mel-scale, which are similar to human 
auditory system. The coefficients are the discrete cosine transform of the
mel-scaled log-power spectrum. We have used the first 13 MFCCs as they are 
considered to carry enough discriminative information.

We have calculated various statistics of these features over periods of time to study
the changes in these features over time.

Network graph features. A finite graph can be represented in matrix forms. An
adjacency matrix is a square matrix used to represent a finite graph, in which the
elements of the matrix indicate whether pairs of vertices are adjacent or not in the
graph. In graph theory, a degree of a node is defined as the number of edges incident on
the node. A degree matrix is a diagonal matrix which contains information about the
degree of each node. Several topological features that aim to describe the nature of
daily interactions can be extracted from these graphs. A total of 11 graph features were
investigated in this work.
Basic graph descriptors

� Number of edges: The total number of edges or links present in the graph.

� Number of nodes: The total number of active nodes present in the graph.



� Average degree: It is the number of links per node, and defined as 2m
n , where n is

the number of nodes and m is the number of edges.

� Number of connected triples: This routine counts the number of connected triples
of nodes. Here it can be defined as a subgraph of three nodes such that there is at
least one node among the three which is adjacent to both of the other two nodes. 

� Number of cycles: This routine calculates the number of independent loops of
cycles. It is defined as m− n+ c, where m is the number of edges, n is the
number of nodes and c is the number of connected components.

Graph centrality measures
Centrality refers to the place of nodes in the network, namely how they are

connected to all other nodes in a local or global sense. Generally, there are centralities
based on the number of links per node, or based on the number of paths that go
through a node. The following features are used as the measures of graph centrality.

� Degrees: The average number of edges adjacent to a node.

� Average neighbor degree: It is a measure of the average degree of adjacent or
neighboring nodes for every vertex. In our work we computed took the average of
this measure across all nodes.

� Eigen centrality : It is the eigenvector corresponding to the largest eigenvalue of
the adjacency matrix. The i-th component of this eigenvector gives the centrality
score of the i-th node of the network. The average eigen centrality across all nodes
was computed for this study.

Laplacian features
These functions concern mostly the spectrum of the adjacency matrix, for which the

Laplacian of the graph has to constructed. The Laplacian graph is defined as the
difference between the degree and the adjacency matrix. The Laplacian matrix Ln×n, is
defined as,

L = D −A,

where, D is the degree matrix and A is the adjacency matrix.

� Graph spectrum: It is the list of all the eigenvalues of the Laplacian of the graph. 
An average over all eigen values was used for this study.

� Algebraic connectivity: It is the second smallest eigenvalue of the Laplacian graph. 

� Graph energy : It is defined as the sum of the absolute values of the real
components of the eigenvalues of the graph.

Regression Method. The regression methods allow us to summarize and study
relationships between two continuous (quantitative) variables. One variable, denoted x, 
is regarded as the predictor, explanatory, or independent variable, and the other
variable, denoted y, is regarded as the response, outcome, or dependent variable. The
three regression methods used in this study are briefly described below,

� Support vector regression

In support vector regression, the input X is first mapped onto a m-dimensional
feature space using some fixed (nonlinear) mapping, and then a linear model is



constructed in this feature space. Using mathematical notation, the linear model
(in the feature space), y is given by

y =
m∑
j=1

wjgj(X) + b

where gj , j = 1, ..., m denotes a set of linear/nonlinear transformations, and b is 
the “bias” term. In this work, we have used a second order polynomial 
transformation. Often the data are assumed to be zero mean (this can be achieved 
by preprocessing), so the bias term is dropped. The output variable is estimated 
my minimizing ||w||2 and the quality of estimated is measured by a loss function. 
In Weka, Alex Smola and Bernhard Scholkopf’s sequential minimal optimization 
algorithm for training a support vector regression model [10, 11] is implemented. 
In this paper, we implemented a second order polynomial kernel function (gj ), in 
order to establish the relationship between communication and productivity. The 
accuracy of the SVR model is evaluated by comparing the predicted result with 
the actual data.
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