
Feasibility and reliability of sequential logic with
gene regulatory networks

Morgan Madec1*, Elise Rosati1, Christophe Lallement1

1Laboratory of Engineering Sciences, Computer Sciences and Imaging, UMR 7357 (University of Strasbourg / CNRS), 300,

boulevard Sébastien Brandt, 67412 Illkirch, France. *Corresponding author, e-mail: morgan.madec@unistra.fr

Supporting Information 1

Design and Simulation of the System A

1. Specifications
System A operates as follows: “The system is composed of two inputs (A and B) and one output (YFP).

The output only goes high if both inputs are high. Conversely, the output goes low if both inputs are

low. Otherwise, the output stays at its previous state.’

2. State Diagram
The state diagram of system A is described in Fig. 1. It is composed of six states. Initially, the signals 𝐴,

𝐵 and 𝑌𝐹𝑃 are low and the system is in state S1. From this initial state, the system can reach S3 if 𝐴

goes high, or S2 if 𝐵 goes high. From state S2 (resp. S3), it can then reach back S1 if the active input 𝐵

(resp. 𝐴) returns low, or S4 if the other input 𝐴 (resp. 𝐵) also goes high. Reaching S4 triggers the

production of 𝑌𝐹𝑃. The lower part of the diagram is the symmetrical of the higher one. When 𝐴 or 𝐵

goes down, the system goes to S5 or S6 respectively. From S5 or S6 states, it can go back to S4 if both

input get high, or to the initial state S1 if both inputs go low. In this case, 𝑌𝐹𝑃 also goes low.

3. Synthesis With Huffman-Mealy’s Method
The Huffman-Mealy’s method is a five-step process that computes the transition logic and the output

logic of an asynchronous sequential system described by a state diagram [1]. The state diagram of the

system A is given in Fig 1.

3.1. Phase matrix
The first step consists of translating the state diagram into a phase matrix. Each line of this phase matrix

corresponds to one state: the stable state is written below the corresponding input combination and

mailto:morgan.madec@unistra.fr

marked up (red-coloured in our case) while the states toward transitions exist are recorded below the

input combination that triggers the transition. The phase matrix of system A is given in Table 1.

Figure 1. State diagram of system A. The system is composed of six states.

Table 1. Phase matrix for system A.

Stable
State

Input combination (𝐴𝐵) Output
𝑌𝐹𝑃 0 0 0 1 1 1 1 0

𝑆1 𝑆1 𝑆2 𝑆3 0

𝑆2 𝑆1 𝑆2 𝑆4 0

𝑆3 𝑆1 𝑆4 𝑆3 0

𝑆4 𝑆5 𝑆4 𝑆6 1

𝑆5 𝑆1 𝑆5 𝑆4 1

𝑆6 𝑆1 𝑆4 𝑆6 1

3.2. Reduced phase matrix
The second step consists of reducing the phase matrix by combining lines that are compatible with

each other. Two (or more) lines are compatible as soon as they have a common state number for each

input combination (if a cell is empty, it is compatible with every state). For the phase matrix of Table

1, it turns out that the first three lines, on the one hand, and the last three lines, on the other hand,

are compatible. This process leads to the reduced phase matrix given in Table 2.

Table 2. Reduced phase matrix for system A.

Input combination (𝐴𝐵)
0 0 0 1 1 1 1 0

𝑆1 𝑆2 𝑆4 𝑆3
𝑆1 𝑆5 𝑆4 𝑆6

11/1

10/001/0

00/0

10/101/1

State S1

State S3State S2

State S4

State S5 State S6

A=0 B=0
YFP=0

A=0 B=1
YFP=0

A=1 B=0
YFP=0

A=1 B=1
YFP=1

A=0 B=1
YFP=1

A=1 B=0
YFP=1

3.3. State encoding
The third step is the state encoding. First, the number of lines in the reduced phase matrix sets the

minimal number of internal variables (and thus the number of positive feedback loop) the system

requires. In our case, as there are only two lines in the reduced phase, one internal variable is enough.

Let 𝑋 be this variable. The choice of state encoding is arbitral. Let us choose 𝑋 = 0 for states S1 to S3

and 𝑋 = 1 for states S4 to S6.

3.4. Transition logic Karnaugh map
The fourth step consists of translating the reduced phase matrix into the transition Karnaugh map and

solve it. Column headers of the Karnaugh map are the input combinations whereas row headers are

the internal variables. It gives the next value of internal variables as a function of the current ones and

inputs. The map is filled as following:

 for cells that correspond to stable states (red-coloured states in the reduced phase matrix),

the internal variables have to stay at their previous value. Thus, we just have to fill these cells

with the same value as in the line header.

 for cells that correspond to transition states (black-coloured states in the reduced phase

matrix), internal variables have to change to the combination that makes the state stable.

Thus, we just have to fill these cells with the value of the line header for which the state is

stable.

The transition Karnaugh map for system A is given in Table 3.

Table 3. Transition Karnaugh map for System A. Values in cells corresponds to the next state of the internal variable.

 Input combination (𝐴𝐵)
 0 0 0 1 1 1 1 0

Internal
Variable (𝑋)

0 0 0 1 0

1 0 1 1 1

Then, the Boolean equations of the transition logic, which gives the next value of internal variable 𝑋’

as a function of the current one 𝑋 and the inputs 𝐴 and 𝐵, are computed from the transition Karnaugh

map. In our case, the equation is

 𝑋′ = 𝐴 ∙ 𝐵 + 𝑋 ∙ (𝐴 + 𝐵) (1)

3.5. Output logic Karnaugh map
The last step of Huffman-Mealy’s method consists of building and solving the Karnaugh map for the

outputs of the system. The output logic Karnaugh map is built in the same way as for the transition

logic Karnaugh map (see Section 3.4). However, each cell is filled with the output value corresponding

to each state, i.e. 𝑌𝐹𝑃 = 0 for states S1 to S3 and 𝑌𝐹𝑃 = 1 for states S4 to S6.

For this example, the output logic Karnaugh map and the transition logic Karnaugh map are similar.

But this is not the case in general. The output logic Boolean equation is

 𝑌𝐹𝑃 = 𝐴 ∙ 𝐵 + 𝑋 ∙ (𝐴 + 𝐵) (2)

4. Construction of the GRN
The construction of Gene Regulation Network (GRN) from the Boolean equations is performed with

GeNeDA, a genetic design automation tool derived from the field of digital electronics [2]. GeNeDA

computes the optimal GRN that matches a Boolean equation by assembling abstracted biological parts

(regulated promoters) given in a library. In our case, a library with four abstracted biological parts is

used:

 A promoter with a single repressor that performs a NOT function (𝑅̅, see Fig. 2A)

 A promoter with one activator and one repressor that performs an INH function (𝐴 ∙ 𝑅̅, see Fig. 2B)

 A promoter with two repressors that performs an NOR function (𝑅1 + 𝑅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , see Fig. 2C)

 A promoter with two activators that performs an OR function (𝑅1 + 𝑅2, see Fig. 2D)

Figure 2. The four abstracted constructs available in the GeNeDA library. A) is a NOT gate, B) is an INH gate, C) is NOT gate,

and D) is an OR gate.

The GRN inferred by GeNeDA for equations (1) and (2) is shown in Fig. 3. It is composed of 5 promoters

and 5 transcription factors (𝑅1 to 𝑅4 and 𝑋 which is the internal variable). Equations (3) to (7) are the

Boolean equations of each transcription factor and equation (8) is the equation of the output.

Figure 3. GRN inferred by GeNeDA for Eq. (1) and (2). The GRN is composed of 5 operons and 5 transcription factors.

 𝑅1 = 𝐵̅ (3)

 𝑅2 = 𝐴 ∙ 𝑅1̅̅̅̅ = 𝐴 ∙ 𝐵 (4)

 𝑅3 = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ (5)

 𝑅4 = 𝑅2 + 𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝐴 ∙ 𝐵) + 𝑋̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (6)

A

R

X

X

R2

R1

X

R

A1

A2

X

A) B)

C) D)

R1

B

YFP

A

B

A

R4

X

R3

R2

#1

#2

#3

#4

#5

 𝑋′ = 𝑅3 + 𝑅4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑅3̅̅ ̅ ∙ 𝑅4̅̅ ̅ = (𝐴 + 𝐵) ∙ [(𝐴 ∙ 𝐵) + 𝑋] = (𝐴 ∙ 𝐵) + 𝑋 ∙ (𝐴 + 𝐵) (7)

 𝑌𝐹𝑃 = 𝑋′ = (𝐴 ∙ 𝐵) + 𝑋 ∙ (𝐴 + 𝐵) (8)

5. Possible Concrete Implementation
In 2020, J. Shin et al. designed and validated experimentally large GRN in E.Coli, composed of eighteen

different NOT and NOR constructs, and performing a binary to seven-segment display transcoder [3].

We propose here a possible implementation of the GRN of the system A reinvesting the parts designed

by J. Shin et al. The correspondence between abstracted transcription factors (R1, R2, etc.) and actual

transcription factors (amtR, lmrA, etc.) is the following:

 The input 𝐴 corresponds to Tet Repressor (tetR)

 The input 𝐵 corresponds to Lux Repressor (luxR)

 The transcription factor 𝑅1 corresponds to the repressor ameR

 The transcription factor 𝑅2 corresponds to the repressor phlF

 The transcription factor 𝑅3 corresponds to the repressor vanR

 The transcription factor 𝑅4 corresponds to the repressor lmrA

 The internal variable 𝑋 corresponds to the repressor bm3R1

 As there is no direct INH construct, a new transcription factor amtR is required to replace the

activation of the promoter #2 by A with a double repression.

The corresponding GRN is shown in Fig 4. A larger sketch is also provided as Supporting Information 5.

Figure 4. Possible implementation of the GRN associated with the system A using constructs described in [3].

6. Boolean Model
The behaviour of the system at the Boolean level can be described in VHDL, a hardware description

language dedicated to the modelling and the simulation of digital electronic circuits [4]. VHDL enables

the modelling of a given system at different levels of abstraction. In our case, the system is described

at three different levels of abstractions: the behavioural model, the ideal model of the GRN and the

delayed model of the GRN. The Listing 1 is the VHDL description of this system.

5.1. Behavioural model
The behavioural model of the system corresponds to a direct and procedural translation in VHDL of

the state diagram in VHDL. Thus, it can be considered as a reference model because it describes strictly

the targeted behaviour. In the Listing 1, the behavioural model corresponds to the PROCESS (that

describes the state diagram) and the affectation of YFP1.

5.2. Ideal model of the GRN
The ideal model of the GRN is the transcription of equations (7) and (8). In the Listing 1, it corresponds

to the affectations of X2 and YFP2. This model can be used to validate the design process.

5.3. Delayed model of the GRN
The delayed model for the GRN is composed of the same equations as the ideal model except that

delays are introduced for each regulation process. The description corresponds to the raw form of

equations (3) to (7) instead of the compact form of equation (7) in order to introduce the delays at the

right place:

 Between a switch of B and the resulting switch of R1,

 Between a switch of R1 or A the resulting possible switch of R2,

 Between a switch of A or B and the resulting possible switch of R3,

 Between a switch of R3 or R4 and the resulting possible switch of X and YFP,

 Between a switch of R2 or X and the resulting possible switch of R4.

Listing 1. VHDL model of system A.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Ex1 IS

END ENTITY;

ARCHITECTURE Test OF Ex1 IS

 SIGNAL A, B : STD_LOGIC := '0';

 SIGNAL YFP1, YFP2, YFP3 : STD_LOGIC := '0';

 SIGNAL X1, X2, X3 : STD_LOGIC := '0';

 SIGNAL C1, C2, C3, C4, C5 : STD_LOGIC := '0';

BEGIN

 -- Behavioural model

 PROCESS (A,B)

 BEGIN

 IF (X1='0') THEN

 X1 <= A AND B;

 ELSIF (X1='1') THEN

 X1 <= A OR B;

 END IF;

 END PROCESS;

 YFP1 <= X1;

 -- Ideal model of the GRN

 X2 <= (A AND B) OR (X2 AND (A OR B));

 YFP2 <= X2;

 -- Delayed model of the GRN

 C1 <= NOT(A) AFTER 100 ps;

 C2 <= B AND NOT(C1) AFTER 100 ps;

 C3 <= A OR B AFTER 100 ps;

 C4 <= NOT(X2) AFTER 100 ps;

 C5 <= C3 AND NOT(C4) AFTER 100 ps;

 X3 <= C2 OR C5;

 YFP3 <= X3;

 -- Test Vector

 A <= '0', '1' AFTER 3 ns, '0' AFTER 4 ns, '1' AFTER 5 ns, '0'

 AFTER 7 ns, '1' AFTER 8 ns, '0' AFTER 12 ns, '1' AFTER 14 ns,

 '0' AFTER 15 ns;

 B <= '0', '1' AFTER 1 ns, '0' AFTER 2 ns, '1' AFTER 6 ns, '0'

 AFTER 9 ns, '1' AFTER 10 ns, '0' AFTER 11 ns, '1' AFTER 13

 ns, '0' AFTER 16 ns;

 END ARCHITECTURE;

5.4. Test vector
The test vector is a description of the stimuli applied to the system in order to validate its correct

operation. Ideally, the test vector has to cover all the possible path in the state diagram. For our

system, the test vector corresponds to the timing diagram shown in Fig. 5.

Figure 5. Timing diagram of the test vector and expected response of the system A.

7. Dynamic Model
We established the dynamic models for system A directly from GRN architecture. The dynamic model

is composed of a set of 14 ordinary differential equations (ODEs), one for each input (2), one for each

transcription factor (5), one for each associated mRNA (5), one for the reporter (1) and one for the

mRNA associated with the reporter (1). Regulations are described as a modulation of the transcription

rate according to Hill’s equation [5].

Equations (9) to (22) are the dynamic model of the system A. Table 4 summarise the parameters of the

models. For computation purpose, the concentrations of all involved molecules are gathered in a state

vector. Table 5 gives the way the concentrations of molecules are ordered in this state vector. The

Listing 2 is the MATLAB function SystemA_ODE which computing the derivative terms of the state

vector dY as a function of the state vector itself Y and the time t, i.e. equations (9) to (22).

The input stimuli are also encoded in SystemA_ODE by computing betaA and betaB as a function of

the time.

𝑑[𝐴]

𝑑𝑡
= 𝛽𝐴(𝑡) − 𝑑 ∙ [𝐴] (9)

𝑑[𝐵]

𝑑𝑡
= 𝛽𝐵(𝑡) − 𝑑 ∙ [𝐵] (10)

𝑑[𝑚𝑅1]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾1
𝑛1

𝐾1
𝑛1 + [𝐵]𝑛1

) − 𝑑𝑚 ∙ [𝑚𝑅1] (11)

𝑑[𝑅1]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅1] − 𝑑 ∙ [𝑅1] (12)

𝑑[𝑚𝑅2]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾2
𝑛2

𝐾2
𝑛2 + [𝑅1]𝑛2

∙
[𝐴]𝑛3

𝐾3
𝑛3 + [𝐴]𝑛3

) − 𝑑𝑚 ∙ [𝑚𝑅2] (13)

𝑑[𝑅2]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅2] − 𝑑 ∙ [𝑅2] (14)

𝑑[𝑚𝑅3]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾4
𝑛4

𝐾4
𝑛4 + [𝐴]𝑛4

∙
𝐾5
𝑛5

𝐾5
𝑛5 + [𝐵]𝑛5

) − 𝑑𝑚 ∙ [𝑚𝑅3] (15)

𝑑[𝑅3]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅3] − 𝑑 ∙ [𝑅3] (16)

𝑑[𝑚𝑅4]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾6
𝑛6

𝐾6
𝑛6 + [𝑅2]𝑛6

∙
𝐾7
𝑛7

𝐾7
𝑛7 + [𝑋]𝑛7

) − 𝑑𝑚 ∙ [𝑚𝑅4] (17)

𝑑[𝑅4]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑅4] − 𝑑 ∙ [𝑅4] (18)

𝑑[𝑚𝑋]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾8
𝑛8

𝐾8
𝑛8 + [𝑅3]𝑛8

∙
𝐾9
𝑛9

𝐾9
𝑛9 + [𝑅4]𝑛9

) − 𝑑𝑚 ∙ [𝑚𝑋] (19)

𝑑[𝑋]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑋] − 𝑑 ∙ [𝑋] (20)

𝑑[𝑚𝑌𝐹𝑃]

𝑑𝑡
= 𝐾𝑇𝑅 ∙ (𝛼 + (1 − 𝛼) ∙

𝐾8
𝑛8

𝐾8
𝑛8 + [𝑅3]𝑛8

∙
𝐾9
𝑛9

𝐾9
𝑛9 + [𝑅4]𝑛9

) − 𝑑𝑚 ∙ [𝑚𝑌𝐹𝑃] (21)

𝑑[𝑌𝐹𝑃]

𝑑𝑡
= 𝐾𝑇𝐿 ∙ [𝑚𝑌𝐹𝑃] − 𝑑 ∙ [𝑌𝐹𝑃] (22)

Listing 2. MATLAB function giving the dynamic model of system A.

function dY = SystemA_ODE(t,Y)

 % Nominal value of parameters

 global Ktr alpha K_nom n_nom Ktl dm d

 % Variations

 global sigma_K sigma_n sigma_noise

 % Waveform definition

 global tf

 betaA = 0;

 if (t>3*tf && t<4*tf) || (t>5*tf && t<7*tf) || (t>8*tf && t<12*tf)

 || (t>14*tf && t<15*tf)

 betaA = 1e-3;

 end

 betaB = 0;

 if (t>1*tf && t<2*tf) || (t>6*tf && t<9*tf) || (t>10*tf && t<11*tf)

 || (t>13*tf && t<16*tf)

 betaB = 1e-3;

 end

 % Parameter set

 n = max(ones(1,9)*n_nom .* (1+sigma_n*randn(1,9)),0);

 while sum(n>0)<9,

 n = max(ones(1,9)*n_nom .* (1+sigma_n*randn(1,9)),0);

 end

 K = 10.^(log10(ones(1,9)*K_nom) .* (1+sigma_K*randn(1,9)));

 % Equations

 dY(1) = betaA - d*Y(1);

 dY(2) = betaB - d*Y(2);

 dY(3) = Ktr*Hill_R(K(1),n(1),Y(2)) - dm*Y(3);

 dY(4) = Ktl*Y(3) - d*Y(4);

 dY(5) = Ktr*Hill_AR(K(3),n(3),Y(1),K(2),n(2),Y(4)) - dm*Y(5);

 dY(6) = Ktl*Y(5) - d*Y(6);

 dY(7) = Ktr*Hill_RR(K(4),n(4),Y(1),K(5),n(5),Y(2)) - dm*Y(7);

 dY(8) = Ktl*Y(7) - d*Y(8);

 dY(9) = Ktr*Hill_RR(K(6),n(6),Y(6),K(7),n(7),Y(12)) - dm*Y(9);

 dY(10) = Ktl*Y(9) - d*Y(10);

 dY(11) = Ktr*Hill_RR(K(8),n(8),Y(8),K(9),n(9),Y(10)) - dm*Y(11);

 dY(12) = Ktl*Y(11) - d*Y(12);

 dY(13) = Ktr*Hill_RR(K(8),n(8),Y(8),K(9),n(9),Y(10)) - dm*Y(13);

 dY(14) = Ktl*Y(13) - d*Y(14);

 dY = dY' + randn(14,1)*sigma_noise;

Table 4. List of specific parameters.

Symbol Description

𝐾1 Dissociation constant of B on the promoter of the operon #1
𝐾2 Dissociation constant of R1 on the promoter of the operon #2

𝐾3 Dissociation constant of A on the promoter of the operon #2

𝐾4 Dissociation constant of A on the promoter of the operon #3

𝐾5 Dissociation constant of B on the promoter of the operon #3

𝐾6 Dissociation constant of R2 on the promoter of the operon #4

𝐾7 Dissociation constant of X on the promoter of the operon #4

𝐾8 Dissociation constant of R3 on the promoter of the operon #5

𝐾9 Dissociation constant of R4 on the promoter of the operon #5

𝑛1 Hill’s number for the repression of the promoter of the operon #1 by B

𝑛2 Hill’s number for the repression of the promoter of the operon #2 by R1

𝑛3 Hill’s number for the activation of the promoter of the operon #2 by A

𝑛4 Hill’s number for the repression of the promoter of the operon #3 by A

𝑛5 Hill’s number for the repression of the promoter of the operon #3 by B

𝑛6 Hill’s number for the repression of the promoter of the operon #4 by R2

𝑛7 Hill’s number for the repression of the promoter of the operon #4 by X

𝑛8 Hill’s number for the repression of the promoter of the operon #5 by R3

𝑛9 Hill’s number for the repression of the promoter of the operon #5 by R4

Table 5. Composition of the state vector.

Index Description Description

1 [𝐴] Concentration of A

2 [𝐵] Concentration of B

3 [𝑚𝑅1] Concentration of mRNA for R1

4 [𝑅1] Concentration of R1

5 [𝑚𝑅2] Concentration of mRNA for R2

6 [𝑅2] Concentration of R2

7 [𝑚𝑅3] Concentration of mRNA for R3

8 [𝑅3] Concentration of R3

9 [𝑚𝑅4] Concentration of mRNA for R4

10 [𝑅4] Concentration of R4

11 [𝑚𝑋] Concentration of mRNA for X

12 [𝑋] Concentration of X

13 [𝑚𝑌𝐹𝑃] Concentration of mRNA for YFP

14 [𝑌𝐹𝑃] Concentration of YFP

8. Open-loop GRN
The open-loop GRN is obtained by deleting the repression of the operon #4 by X and adding a new

input Xo that represses the operon #4 directly. The sketch of this new GRN is shown in Fig. 6. The timing

diagram used for the simulation of the open-loop GRN is given in Fig. 7.

Figure 6. Sketch of the open-loop GRN. This GRN is now composed of three inputs and one output. Its associated Boolean

function is equation (2)

Figure 7. Timing diagram of the test vector and expected response of the system A in an open loop.

9. References

1. Micheli GD. Synthesis and optimization of digital circuits. McGraw-Hill Higher Education; 1994.

2. Madec M, Pecheux F, Gendrault Y, Rosati E, Lallement C, Haiech J. GeNeDA: An Open-Source
Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.
Journal of Computational Biology. 2016;23. doi:10.1089/cmb.2015.0229

3. Shin J, Zhang S, Der BS, Nielsen AA, Voigt CA. Programming Escherichia coli to function as a digital
display. Molecular Systems Biology. 2020;16: e9401. doi:10.15252/msb.20199401

4. Ashenden PJ. The Designer’s Guide to VHDL. Morgan Kaufmann; 2010.

5. Konkoli Z. Safe uses of Hill’s model: an exact comparison with the Adair-Klotz model. Theoretical
biology & medical modelling. 2011;8: 10–10. doi:10.1186/1742-4682-8-10

R1

B

YFP

A

B

A

R4

R3

R2

Xo

#1

#2

#3

#4

#5

