
S1 Appendix. Data preprocessing. In this appendix, we summarize how the data
preprocessing has been carried out. The whole workflow for preprocessing, feature
engineering and machine learning is written in Python and executed on the high
performance computing cluster of the Potsdam Institute for Climate Impact Research.

1. Processing 3D models. The aim of this step was to save as tabular data for each
building a single footprint geometry, height and id. The 3D models used had
diverse formats: CityGML (Berlin, Brandenburg, Lyon), tabular (Friuli-Venezia
Giulia, the Netherlands), OBJ (Strasbourg, Brest), 3DS (Bordeaux) and DXF
(Montpellier).

Within CityGML models, the height was sometimes available as an attribute. In
this case, we used this value. However, in particular for Berlin, there were
sometimes missing values for the attribute. Then, we computed the difference
between the highest and lowest point of the building. In order to be at least
locally consistent, we used this second method for all building heights in Berlin.
We also retrieved the id and footprint polygons from the 3D models.

For height data coming from OpenStreetMap (Friuli-Venezia Giulia), we first
surveyed where the height attribute was populated using Osmium on a local
version of the OpenStreetMap planet file. We then used the library osmnx [1] to
extract the data at the level of cities. The cities we used had a ratio of ’buildings
with heights over total OSM buildings in the city’ above 90%. We also retrieved
the OSM id and footprint polygon.

For the height data of the Netherlands, we used the 3DBAG from TU Delft. In
these tabular data, building heights were available at different percentiles of the
point cloud. We chose to compute the height by substracting ground values from
roof 75 percentile, as validation work from the data curators indicates this was the
closest value to actual heights.

The data preprocessing for the 5 French cities was carried out separately. The
only city where explicit footprint and height information was given for each
building was Lyon. For the sake of consistency, we have chosen to use the same
three-step pipeline to compute footprint and height for all 5 cities. The first step
consisted in computing the difference between 3D geometries representing facades
and roof slopes. When this information was not explicitly available in the source,
the inclination of the surface was computed through its normal vector: surfaces
with an inclination between 0° and 80° were considered as roof slopes and those
between 80° and 90° (i.e. close to vertical), facades. In the second step, a spatial
join was performed between facade and roof 3D geometries and 2D footprint from
OpenStreetMap. The matching between geometries was not always possible and
16.6% of buildings were lost in the process. Finally, the last step consisted in
computing a building’s height given its OpenStreetMap footprint and the 3D
facade and roof geometries associated to it. We computed three different height
levels : the lowest point of all the facades, the lowest point of the highest roof and
the highest point of the highest roof. The building height was then computed as
the difference between the middle of the highest roof (average between its highest
and lowest points) and the bottom of the lowest facade.

2. Matching buildings with administrative boundaries. In order to have the most
consistent definition of administrative boundaries, we used the Database of Global
Administrative Areas (GDAM). Note, however that the granularity of the

1/2

https://wiki.OpenStreetMap.org/wiki/Osmium
http://3dbag.bk.tudelft.nl/
https://gadm.org/


administrative unit varies across countries (e.g. in the Netherlands over the last
decades, villages have been progressively aggregated into larger areas), which
could have an impact on several features. We joined spatially administrative
boundaries and buildings for each GDAM city in a region. We saved buildings and
boundaries in individual files for each cities.

3. Adding buffer zones. Because we wanted to compute features about the
surroundings of buildings, we needed to add buffers on the outskirts of a city. If
not, we would have biased values at the borders of each city. We added a 500 m
buffer for the buildings layer, and because streets can be much longer, we added a
2 km buffer for them. We saved the extended boundaries in the individual city
boundary file.

4. Parsing street networks. Street networks used in this study are all from
OpenStreetMap. We used osmnx [1] to retrieve streets for each city using the 2 km
buffer. We kept only one way when there were two-way streets. We also kept only
drivable streets, following the assumption that the quality of these data would be
more consistent across regions than for more specific street types, and as the loss
of information from these streets seemed acceptable, especially from a global
network perspective. We then used the library momepy [2] to compute network
metrics. Finally, we converted the nodes of the networks into (street intersection)
points, and the edges into (street) lines, and saved each as separate files for each
city, including as additional attributes the computed metrics and their ids.

5. Generating street-based blocks. When trying to capture morphology metrics on
street-based blocks, we found that it seemed simpler to view them as polygons
rather than lines or networks. One can then compute area and shape metrics in a
straightforward way. Therefore, we converted street lines into polygons, and saved
these ‘street-based blocks‘ into individual files for each city.

6. Adjusting city extent. Because the functions for feature engineering were
computationally intensive and required much RAM for the large cities, we decided
to cut cities above 50,000 buildings into parts to parallelize computations. This is
done by creating a grid within the administrative boundary polygon, adding a
buffer to each part, and joining it to the building geometries. Each part was then
saved as an individual file.

References

1. Boeing G. OSMnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Computers, Environment and Urban Systems.
2017;65:126–139.

2. Fleischmann M. MOMEPY: Urban morphology measuring toolkit. Journal of
Open Source Software. 2019;4(43):1807.

2/2


