S1 Text

An amplified derepression controller with multisite inhibition and positive feedback

G. Drobac, Q. Waheed, B. Heidari, P. Ruoff*
Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Norway

*Corresponding author. Address: Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway, Tel.: (47) 5183-1887, E-mail: peter.ruoff@uis.no

Controller performance towards step-wise changes in k_{1} and linearly increasing k_{1} values

As shown in the schematic diagram by Fig 7 and Eqs 11 and 12 in the main text, a positive feedback can be implemented by first-order or second-order autocatalysis in C, which increase controller performance in terms of its lifetime.
Here, results with step-wise changes and with linear increase in k_{1} are shown when C is produced by first-order and second-order autocatalysis.

First-order autocatalysis in C

Figure S1: Controller performance with first-order autocatalysis in C (Eq. 11 in the main text) and linear increase of $k_{1}\left(\dot{k_{1}}=10.0\right)$. Phase 1: the controller is at steady state at its set-point $A_{\text {set }}=5.0$ with constant $k_{1}=2.0$. Initial concentrations: $A_{0}=5.0, E_{0}=0.9, C_{0}=1.0$. Phase 2 : k_{1} increases linearly, $k_{2}=1 \times 10^{5}, k_{3}=5 \times 10^{2}, k_{4}=1 \times 10^{2}, k_{5}=10.0$, and $k_{6}=1.0 . K_{M}=1 \times 10^{-6}$, $K_{I}=0.1, n=4\left(\mathrm{Eq} 6\right.$ in the main text). Left panel: k_{1} and C as a function of time; right panel: A and E as a function of time.

Figure S2: Controller performance with first-order autocatalysis in C (Eq. 11 in the main text) and step-wise increase of k_{1}. Phase 1: the controller is at steady state at its set-point $A_{\text {set }}=5.0$ with constant $k_{1}=2.0$. Initial concentrations: $A_{0}=5.0, E_{0}=0.9, C_{0}=1.0$. Phase 2: $k_{1}=2 \times 10^{4}, k_{2}=1 \times 10^{5}$, $k_{3}=5 \times 10^{2}, k_{4}=1 \times 10^{2}, k_{5}=10.0$, and $k_{6}=1.0 . K_{M}=1 \times 10^{-6}, K_{I}=0.1, n=4$ (Eq 6 in the main text). Left panel: k_{1} and C as a function of time; right panel: A and E as a function of time.

Second-order autocatalysis in C

Figure S3: Controller performance with second-order autocatalysis in C (Eq. 12 in the main text) and linear increase of $k_{1}\left(\dot{k}_{1}=10.0\right)$. Phase 1 : the controller is at steady state at its set-point $A_{\text {set }}=5.0$ with constant $k_{1}=2.0$. Initial concentrations: $A_{0}=5.0, E_{0}=0.9, C_{0}=1.0$. Phase 2: k_{1} increases linearly, $k_{2}=1 \times 10^{5}, k_{3}=5 \times 10^{2}, k_{4}=1 \times 10^{2}, k_{5}=10.0$, and $k_{6}=1.0 . K_{M}=1 \times 10^{-6}$, $K_{I}=0.1, n=4\left(\mathrm{Eq} 6\right.$ in the main text). Left panel: k_{1} and C as a function of time; right panel: A and E as a function of time.

Figure S4: Controller performance with second-order autocatalysis in C (Eq. 12 in the main text) and step-wise increase of k_{1}. Phase 1: the controller is at steady state at its set-point $A_{\text {set }}=5.0$ with constant $k_{1}=2.0$. Initial concentrations: $A_{0}=5.0, E_{0}=0.9, C_{0}=1.0$. Phase 2: $k_{1}=2 \times 10^{4}, k_{2}=1 \times 10^{5}$, $k_{3}=5 \times 10^{2}, k_{4}=1 \times 10^{2}, k_{5}=10.0$, and $k_{6}=1.0 . K_{M}=1 \times 10^{-6}, K_{I}=0.1, n=4$ (Eq 6 in the main text). Left panel: k_{1} and C as a function of time; right panel: A and E as a function of time.

