S1 Text

An amplified derepression controller with multisite inhibition and positive feedback

G. Drobac, Q. Waheed, B. Heidari, P. Ruoff^{*} Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Norway

*Corresponding author. Address: Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway, Tel.: (47) 5183-1887, E-mail: peter.ruoff@uis.no

Controller performance towards step-wise changes in k_1 and linearly increasing k_1 values

As shown in the schematic diagram by Fig 7 and Eqs 11 and 12 in the main text, a positive feedback can be implemented by first-order or second-order autocatalysis in C, which increase controller performance in terms of its life-time.

Here, results with step-wise changes and with linear increase in k_1 are shown when C is produced by first-order and second-order autocatalysis.

1400 700 0.9 5.08 phase 1 0.85 1200 600 phase 2 500 5.04 8.0 1000 0.75 (ng k1 (au) C (au) A (au) 800 400 5 300 0.7 600 ш 200 4.96 0.65 400 phase 2 0.6 200 100 4.92 phase 1 0.55 80 100 120 140 0 20 40 60 0 20 40 60 80 100 120 140 time (au) time (au)

Figure S1: Controller performance with first-order autocatalysis in C (Eq. 11 in the main text) and linear increase of k_1 ($\dot{k_1}$ =10.0). Phase 1: the controller is at steady state at its set-point A_{set} =5.0 with constant k_1 =2.0. Initial concentrations: A_0 =5.0, E_0 =0.9, C_0 =1.0. Phase 2: k_1 increases linearly, k_2 =1 × 10⁵, k_3 =5 × 10², k_4 =1 × 10², k_5 =10.0, and k_6 =1.0. K_M =1 × 10⁻⁶, K_I =0.1, n = 4 (Eq 6 in the main text). Left panel: k_1 and C as a function of time; right panel: A and E as a function of time.

First-order autocatalysis in C

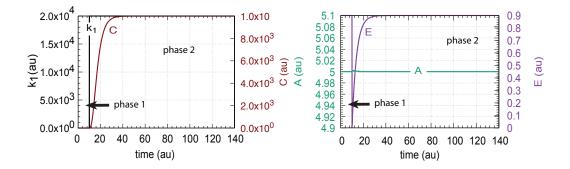


Figure S2: Controller performance with first-order autocatalysis in C (Eq. 11 in the main text) and step-wise increase of k_1 . Phase 1: the controller is at steady state at its set-point $A_{set}=5.0$ with constant $k_1=2.0$. Initial concentrations: $A_0=5.0$, $E_0=0.9$, $C_0=1.0$. Phase 2: $k_1=2 \times 10^4$, $k_2=1 \times 10^5$, $k_3=5 \times 10^2$, $k_4=1 \times 10^2$, $k_5=10.0$, and $k_6=1.0$. $K_M=1 \times 10^{-6}$, $K_I=0.1$, n=4 (Eq 6 in the main text). Left panel: k_1 and C as a function of time; right panel: A and E as a function of time.

Second-order autocatalysis in C

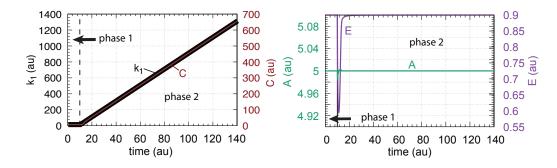


Figure S3: Controller performance with second-order autocatalysis in C (Eq. 12 in the main text) and linear increase of k_1 ($\dot{k_1}$ =10.0). Phase 1: the controller is at steady state at its set-point A_{set} =5.0 with constant k_1 =2.0. Initial concentrations: A_0 =5.0, E_0 =0.9, C_0 =1.0. Phase 2: k_1 increases linearly, k_2 =1 × 10⁵, k_3 =5 × 10², k_4 =1 × 10², k_5 =10.0, and k_6 =1.0. K_M =1 × 10⁻⁶, K_I =0.1, n = 4 (Eq 6 in the main text). Left panel: k_1 and C as a function of time; right panel: A and E as a function of time.

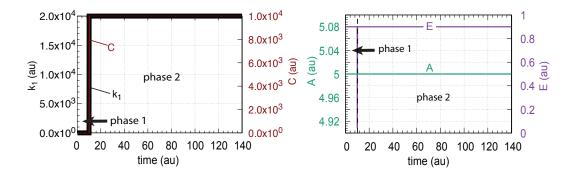


Figure S4: Controller performance with second-order autocatalysis in C (Eq. 12 in the main text) and step-wise increase of k_1 . Phase 1: the controller is at steady state at its set-point $A_{set}=5.0$ with constant $k_1=2.0$. Initial concentrations: $A_0=5.0$, $E_0=0.9$, $C_0=1.0$. Phase 2: $k_1=2 \times 10^4$, $k_2=1 \times 10^5$, $k_3=5 \times 10^2$, $k_4=1 \times 10^2$, $k_5=10.0$, and $k_6=1.0$. $K_M=1 \times 10^{-6}$, $K_I=0.1$, n=4 (Eq 6 in the main text). Left panel: k_1 and C as a function of time; right panel: A and E as a function of time.