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S1 Appendix. Proofs of propositions. 773

Proof of Proposition 2.3. Since ρ is calibrated to Y , we know that∫
R
x dµωi(x) = E(Ω,F)(Y | Oωi)

for each i. But E(E(Y | Oωi)) = E(Y ), and so the estimator is unbiased. 774

Next, recall that we could just as easily write∫
R
x dµωi

(x) = E(R,B(R))(Xi)

where Xi ∼ µωi
. Now, using the fact that our measurements are independent, the

definition of calibration, and the generic expression for total variance, we simply
calculate

Var(ρ(S )) =
1

n2

n∑
i=1

Var(Ω,F)[E(R,B(R))(Xi)]

=
1

n2

n∑
i=1

Var(Ω,F)[E(Ω,F)(Y | Oωi
)]

=
Var(Y )

n
− 1

n2

n∑
i=1

E[Var(Y | Oωi)]. (10)

But now since 0 ≤ E[Var(Y | Oω)] ≤ Var(Y ), we must have the expression in (10) 775

bounded by 0 and Var(Y )/n; i.e. the traditional standard error of the mean generated 776

by a sample of fixed measurements. Consistency follows. 777

Proof of Proposition 3.1. Since ν is the convolution of the independent measures
µ1, . . . , µn, we have

nρ(S ) =
n∑
i=1

∫
R
z dµi(z) = Eν(W ).

At the same time, by the definition of a calibrated measurement protocol, we have

nE(ρ(S )) = nE(Y ) = nθ0.
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Therefore, by (8), we have

E(θ̂) =
α+ E[Eν(W )]

α+ β + n
=

α+ nθ0

α+ β + n
,

which approaches θ0 as n→∞. 778

Proof of Proposition 3.2. Since trivial RVVMs free of measurement error are 779

automatically calibrated (see Section 2.2), part (i) follows immediately from 780

Proposition 3.1. Note too that this implies that the bias of θ̂ is the same as what would 781

be generated by the classical Bayes’ estimator derived from the measurement protocol 782

that yields complete information RVVMs free of measurement error. That is, calibrated 783

nontrivial RVVMs do not induce any additional bias that would not have already been 784

present in the error-free sample data y1, . . . , yn. 785

If instead we only know that m2 = o(m1), then we may first simplify the expression
for the Bayes’ estimator in (8). Using the customary notation, we have

E(θ | ρ(S )) =
α+

∑m1

i=1 yi
α+ β +m1 +m2

+
Eν(W )

α+ β +m1 +m2
,

where we have redefined ν = µn−m2+1 ∗ · · · ∗ µn, with W ∼ ν, by separating the first m1 786

point-mass RVVMs from the nontrivial response process measure ν. The expectation of 787

the first term is (α+m1θ0)(α+ β +m1 +m2)−1 which approaches θ0 as 788

m1 +m2 →∞, while the second term is bounded by m2(α+ β +m1 +m2)−1. Since 789

m2 = o(m1), this term goes to zero as m1 +m2 →∞. Thus, E(θ̂)→ θ0, proving (ii). 790

To prove the final piece of the proposition, we use our expression for the posterior
variance (9) and rewrite in terms of the redefined ν:

Var(θ | ρ(S )) =
α(β + n) + (β + n− α)(

∑m1

i=1 yi + Eν(W )) + (
∑m1

i=1 yi + Eν(W ))2

(α+ β + n)2(α+ β + n+ 1)

+
Varν(

∑m1

i=1 yi +W )

(α+ β + n)(α+ β + n+ 1)
. (11)

Using again the fact that Eν(W ) ≤ m2, the first term of this expression is 791

asymptotically equivalent to (m1 +m2)−1. Thus, this term goes to zero as 792

(m1 +m2)→∞ regardless of the growth rate of m2. Now, Var(θ | ρ(S ),W ) is always 793

bounded by a constant function, which is integrable over ν, thus by the reverse Fatou’s 794

Lemma, Eν [Var(θ | ρ(S ),W )]→ 0. 795

To deal with the second term in equation (11), we first simplify to the bound

≤ Varν

(∑m1

i=1 yi +W

α+ β + n

)
,

and then apply Popoviciu’s Inequality:

≤ 1

4

(
α+

∑m1

i=1 yi +m2

α+ β +m1 +m2
−

α+
∑m1

i=1 yi
α+ β +m1 +m2

)2

.

Thus,

Varν [E(θ | ρ(S ),W )] ≤ m2
2

4(α+ β +m1 +m2)2
.

This bound is asymptotically equivalent to m2
2(m1 +m2)−2 which goes to zero if 796

m2 = o(m1). Therefore, Var(θ | ρ(S ))→ 0 if m2 = o(m1), proving the last part of the 797

proposition. 798
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