
1. Data 
We downloaded quarterly percentage change (to the previous period) GDP growth data from 1960 to 

2019 from the OECD database.  

Source: OECD (2020), Gross domestic product (GDP) (indicator). doi: 10.1787/dc2f7aec-en (Accessed 

on 05 February 2020); Source: OECD National Accounts Statistics: Quarterly National Accounts  

Two datasets were created for different analytical purposes: 

The Long dataset covers a longer time period but involves fewer countries. 

Time period: from the second quarter of 1961 to the third quarter of 2019. 

25 countries: Australia (AUS), Austria (AUT), Belgium(BEL), Canada(CAN), Switzerland(CHE), Germany 

(DEU), Denmark (DNK), Spain (ESP), Finland (FIN), France (FRA), United Kingdom (GBR), Greece (GRC), 

Ireland (IRL), Island (ISL), Italy (ITA), Japan (JPN), Korea (KOR), Luxemburg (LUX), Mexico (MEX), 

Netherlands (NLD), Norway (NOR), Portugal (PRT), Sweden (SWE), United States of America (USA), 

South Afrika (ZAF).  

The Short dataset covers a shorter time period but involves more countries. 

Time period: from the third quarter of 1996 to the third quarter of 2019. 

42 countries: Argentina (ARG), Australia (AUS), Austria (AUT), Belgium(BEL), Bulgaria (BGR), Brazil 

(BRA), Canada (CAN), Switzerland(CHE), Chile (CHL),Czech Republic (CZE), Germany (DEU), Denmark 

(DNK), Spain (ESP), Estonia (EST), Finland (FIN), France (FRA), United Kingdom (GBR), Greece (GRC), 

Hungary (HUN), Indonesia (IDN), India (IND),  Ireland (IRL), Island (ISL), Israel (ISR), Italy (ITA), Japan 

(JPN), Korea (KOR), Lithuania (LTU),  Luxemburg (LUX), Latvia (LVA), Mexico (MEX), Netherlands (NLD), 

Norway (NOR),  New Zealand (NZL), Poland (POL), Portugal (PRT), Romania (ROU), Slovakia (SVK), 

Slovenia (SVN),  Sweden (SWE), United States of America (USA), South Afrika (ZAF). 

The downloaded and sorted data can be found in the worksheets of S2 Table. 

2. Cyclical components of the time series 
From the downloaded GDP growth data, we calculated GDP level data. We normalized data to a 

common starting point (100), and with the GDP growth rate we calculated the indexed data (on the 25 

countries data: 1961:Q1 = 100 and on the 42 countries data: 1996:Q2 = 100) . The calculated GDP index 

data can be found in S2 Table. 

GDPt=GDPt-1+(GDPt-1*GDP_growtht)/100 

We used the Hodric-Prescott filter to remove the cyclical component of the time series. For the filtering 

we used the hpfilter function in Matlab with the default smoothing parameter of 1600. 

[T,C] = hpfilter(GDP, 1600); 

We calculated the percentage deviation of the cyclical component from the trend component. 

Y = (C./T-1)*100; 

In the last step, we deleted the first observation of cyclical component (that was generated in the first 

step) and we have got the final Y time series (see Y.mat, Y42.mat in S3 File). This is labelled as 𝑐̂𝑡,𝑖 in 

the paper. 



 

3. Stationarity test 
To apply the Granger causality test, first we need to check for the stationarity of the time series. 

We applied Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and Augmented Dickey-Fuller Test (ADF) for 

the whole time series and for the subsamples on the longer and shorter database. 

We used R software, aTSA package for the tests. 

We applied the kpss.test function, and we saved the type 1 results (no drift, no trend) in the respective 

worksheets of S2 Table. There we also summarized the results of the subsample tests. 

We applied the adf.test function, and we saved the type 1 (no drift, no trend) results with lag = 1 in 

the respective worksheets of S2 Table.  And we also summarized the results of the subsample tests. 

4. Adjacency matrices 
We used Granger causality to build the contagion networks. In the case that country “A” Granger cause 

country “B”, we have defined a directed link from country “A” to country “B”. To calculate the Granger 

causality we used the granger_cause_1 function in Matlab.  

Source: Robert (2020): 

Granger_Cause_1 (https://www.mathworks.com/matlabcentral/fileexchange/59390-

granger_cause_1), MATLAB Central File Exchange. Retrieved February 24, 2020. 

In order to control for multiple hypothesis testing which results from simultaneously testing 25*25 and 

42*42 hypotheses of Granger causality, we employed the FDR method. Practically the fdr_bh function 

was used in Matlab with a 5% FDR. The method was applied separately for all time windows. 

Source: David Groppe (2020): fdr_bh 

(https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh), MATLAB Central File 

Exchange. Retrieved July 10, 2020. 

We used rolling time window analysis. The rolling window size is 52 quarters. The rolling_Granger.m 

in S3 File runs on the Y time series and chooses every 13 years (52 observations) periods. The script 

uses the networkGranger.m function in S3 File that chooses the country pairs. The granger_cause_1 

function is running under them, it calculates the F values and p-values of the Granger causality test, 

and the results are saved for each country pair in a matrix, and the matrices build a 3D array, where 

the third dimensions are the time windows. The main output of the rolling_Granger script is the 

Granger adjacency array with 0 and 1 elements according to the significance of the p-values.  

To exclude crisis periods, we used the Omitperiods vector (see in S2 Table) and we modified the 

networkGranger.m function to networkGrangerNC.m found in S3 File. When the function chooses the 

country pair, it will filter those elements of the Y columns where the value of the Omitperiods vector 

is 1. The Omitperiods vector is a column vector with 0 and 1 elements. The element is 1, when there is 

a crisis period, and the first period after the crisis period in order to avoid crisis period both on the left- 

and the right hand sides of the estimated equations.  

5. Identifying and excluding crisis periods 
We used two methods to identify times of crises. First we checked the literature (e.g.: First oil crisis, 

Crisis of 2008). Where we did not find an exact identification of the quarters of the crises (e.g. Second 



oil crisis, Latin-American crisis) we checked the time series, and we identified the initial quarter of the 

crisis where GDP growth declined for most countries in the year of the crises.  

With these methods, we identify the following crises periods: 

1973Q4: First oil crisis 

1979Q2: Second oil crisis  

1982Q3: Latin-American crisis 

1995Q4: Mexican peso crisis  

1998Q2: East Asian crisis  

1999Q3: Russian crisis, Brazilian crisis  

2000Q3: Dotcom crisis 

2008Q3 - 2009Q3: Crisis of 2008 

Once these crisis quarters are determined, we re-run Granger-causality tests without these quarters 

in the sample. In order to filter out crisis periods, we employ the fact that the regressions in equations 

(1) and (2) of the manuscript are cross-sectional in nature: the time structure of the data is imposed 

by ‘shifting’ the same data series on the right hand side compared to the left hand side. The data 

structure with lag 2 looks like as in the following table: 

# of obs. 𝑦𝑡 𝑥𝑡−1 𝑥𝑡−2 

1. 𝑐̂3 𝑐̂2 𝑐̂1 

2. 𝑐̂4 𝑐̂3 𝑐̂2 

3. 𝑐̂5 𝑐̂4 𝑐̂3 

4. 𝑐̂6 𝑐̂5 𝑐̂4 

5. 𝑐̂7 𝑐̂6 𝑐̂5 

6. 𝑐̂8 𝑐̂7 𝑐̂6 

7. 𝑐̂9 𝑐̂8 𝑐̂7 

⋮ ⋮ ⋮ ⋮ 
T-2. 𝑐̂𝑇 𝑐̂𝑇−1 𝑐̂𝑇−2 

 

The first column contains the identifier of the observations, the second column refers to the LHS 

variable while the third and fourth columns refer to the lagged RHS variables. The indices within the 

table refer to actual time periods. The Granger-causality tests are calculated by practically running a 

regression with the rows of the table taken as independent observations. Now assume, that a crisis is 

identified in periods 5 and 6. Then, we have to delete observations (rows) 3, 4, 5 and 6 from the sample 

as these contain the crisis in one of the LHS or RHS variables. However, observations 1 and 2 still keep 

the appropriate lag structure while they does not contain the crisis periods. The same is true for 

observations 7 and beyond.  

As a result, when controlling for the crisis periods we run the regressions in equations (1) and (2) with 

the crisis periods excluded as in the previous description. In other terms, we omit these periods from 

the regressions as we do with outliers in cross-sectional regression analysis. 

Moreover, the HP-filter used to construct the business cycles naturally creates 'swings' around crisis 

periods: we observe positive output gaps before the crisis and negative ones during and after. In the 

case of a global crisis this leads to co-movements in all filtered time-series as output gaps synchronize 



because of the filtering method. In order to control for this, we do not only exclude the periods after 

the beginning of the crisis, but also before the crises to rule out this kind of co-movements arising from 

the construction of the HP-filter. Our rule-of-thumb in this respect is to exclude the same amount of 

quarters before the crisis as the logic described above for the post-crisis quarters requires. In the 

example given in the table above, we omit 5 after-crisis period, so we also exclude 5 periods before 

the crisis (given that the length of the time window allows).  

6. Network measures/topology: 

Density 
We used the graph.density function in the igraph package in R software to calculate the density of the 

networks. In order to use this function, we need to generate graphs from the adjacency matrices. So 

first we used the graph_from_adjacency_matrix function in igraph package to generate the 

unweighted, directed graphs. 

Source: Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” 

InterJournal, Complex Systems, 1695. http://igraph.org. 

Transitivity/clustering  
We used the ClustBCG function in DirectedClustering packaege in R software to calculate the clustering 

coefficients of the networks. It computes local and global clustering coefficients for networks. For 

directed networks Clemente and Grassi formula is computed. 

Source: Clemente, G.P. and Grassi, R. (2018) Directed clustering in weighted networks: a new 

perspective, Chaos, Solitons and Fractals, 107,26–38. 

Modularity 
For modularity, we need to symmetrize the adjacency matrices. So we used the same 

graph_from_adjacency_matrix function to create an unweighted, and undirected graph. We set the 

mode argument to “plus”. In this case an undirected graph will be created with A(i,j)+A(j,i) edges 

between vertex i and j.  

We used the modularity function in igraph package in R software to calculate how modular is the 

graph. For the membership argument we used the membership function from the same package. For 

the communities argument we used the cluster-louvain function in the same package. It is finding the 

community structure that maximizes the modularity indicator. 

Average path length  
To determine the average path length of the networks we used the average.path.length function in 

the igraph package in R. For this we used the created graphs. We set the unconnected argument to 

FALSE. In this case the length of the missing paths are counted having length vcount(graph), one longer 

than the longest possible geodesic in the network. 

Skewness of degree 
We calculated the degrees of the nodes of the graphs with the degree function in igraph package in R. 

We used the skewness function in the e1071 package in R software, and we used the type=1 setting 

to calculate the skewness of the degrees in the networks. 



7. Generating random networks as a reference network 
We generated 1000 directed random graphs corresponding to every single time window according to 

the Erdős-Rényi model, using the erdos.renyi.game function in igraph in R. The probability for drawing 

an edge between two vertices is set as the density of the observed contagion network for the same 

time window.  

We calculated all topological indicators for the 1000 random graph separately, then for every indicator 

we calculated the avarage of the 1000 indicators together with the 5 and 95 percentiles in order to 

have a reference range for them under the random network hypothesis. 

8. Pairwise stability 
When calculating stability, we used the relative frequencies of four different transitions in the network. 

Given the adjacency matrices A(i,j,t) for all  time windows, for all time-switch (t,t+1) we identify the a 

country-pair as belonging one of the four transitions: 

(1) no connection in t  -> no connection in t+1 

(2) no connection in t  -> connection in t+1 

(3) connection in t   -> no connection in t+1 

(4) connection in t   -> connection in t+1 

Then, using the cardinality of the four groups N1, N2, N3, N4, we calculate the relative frequency of each 

transition: f1,= N1/(N2-N) and so on, where N2-N = N1+ N2+ N3+N4 is the total number of (directed) 

country pairs. 

From the frequencies f, we can also calculate the transition probabilities as 

p1 = f1/(f1+f2) 

p2 = f2/(f1+f2) 

p3 = f3/(f3+f4) 

p4 = f4/(f3+f4) 

9. Systematic contagion paths 
Given the longitudinal nature of our data, we can extract pairwise time series from the adjacency 

matrices A(i,j,t). Fixing i and j, we get a sequence of zeros and ones indicating whether we 

estimated shock contagion between from country i to country j in the subsequent periods. 

On every single sequence of pairwise contagion histories we can run a Wald-Wolfowitz runs test in 

order to test the sequence composition against randomness, given the frequency of ones in the 

sample. For this, we used runstest.m in Matlab which provides as a result the logical result of the 

Hypothesis test that the given sequence is non-random (true) or random (false). 

[H(i,j)] = runstest(A(i,j,:)); 

Given the matrix H(i,j) of logical values, we merge it with a density matrix D(i,j) which contains 

1 if the given pair of countries had more observed contagion events (as estimated by Granger causality 

in time windows) than expected in 95% of random networks with equal density. 

The final adjacency matrix plotted in panel A of Fig 4 was then constructed as 

A(i,j) = H(i,j).*D(i,j). 



The maximum spanning tree in panel B of Fig 4 was constructed on the basis of a directed, weighted 

version of the same graph. We used the original, estimated adjacency matrices A(i,j,t) again (with 

0s and 1s in their entries) as a starting point. But instead of comprising the time dimension using the 

runs test, we simply sum the matrices along the time dimensions to get a weighted adjacency matrix, 

and symmetrize the matrix by summing bidirectional weights on a country-pair: 

[F(i,j)] = sum(A,3); 

Then, we employ the g_mst function in the igraph package with the Prim algorithm in R to obtain the 

minimal spanning tree of 1./F, which corresponds to the maximum spanning tree of F.  


