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S-1. Theory

Our algorithm starts from an experimentally known viscosity-shear rate relation η(γ̇)

and interpolates it by a series of power-law functions. This interpolation is subsequently

used for writing down a similar series of Navier-Stokes equations which are solved first

for the shear rate and then for the velocity profile.

S-1.1. Viscosity model

The viscosity-shear rate relationship of the bioink, or any other generalized Newtonian

fluid, can be approximated by a continuous, piecewise function

η (γ̇) =



K0γ̇
n0−1 0 ≤ γ̇ < Γ̇0

...

Kiγ̇
ni−1 Γ̇i−1 ≤ γ̇ < Γ̇i

...

KN γ̇
nN−1 Γ̇N−1 ≤ γ̇ <∞

, (S-1)

as depicted in figure 1a of the main text. In every interval the viscosity-shear rate

relation is described by a power-law model with a consistency parameter Ki having

the physical unit Pa sni , and a dimensionless exponent ni, according to the literature

[1–7]. We note that the shear rate can also be understood as dimensionless quantity,

normalized to a constant shear rate of 1 s−1 without changing its numerical value. Doing

so, the consistency parameter can be interpreted as a reference viscosity with the more

meaningful physical unit Pa s.

The ith interval is bounded by the shear rates Γ̇i−1 and Γ̇i. The condition

KiΓ̇
ni−1
i = Ki+1Γ̇

ni+1−1
i (S-2)

ensures the continuity of (S-1) across the interval boundary Γ̇i (i = 0, . . . , N − 1). Since

real fluids usually exhibit Newtonian behavior for zero and infinite shear rates, we take

n0 = nN = 1 (S-3)

for the power-law exponents in the first and last interval.

We note that instead of the power-law interpolation, a linear interpolation would also

be possible. However, since most bioinks show power-law shear thinning over a wide

range of shear rates, a power-law interpolation is computationally more efficient when

logarithmically-spaced shear rate intervals are used, as shown in figure 1a.

S-1.2. Determination of Ki and ni

Starting from an experimentally known viscosity-shear rate relation η̃ (γ̇) which can

be given either as raw rheological data or as a viscosity model with known parameters
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(e.g. [8, 9]) such as the Carreau-Yasuda model, the consistency indices Ki and exponents

ni in each interpolation interval are determined as follows. The lowest and highest

consistency indices are fixed by eq. (S-3) as

K0 = η̃
(

Γ̇0

)
and KN = η̃

(
Γ̇N−1

)
. (S-4)

Since rheological data often spans multiple decades, we choose an equidistant

partitioning of the interval [Γ̇0, Γ̇N−1] on a logarithmic scale, as shown in figure 1a. Given

the bounds of this interval and the number of interpolated points, the intermediate shear

rates are given by

Γ̇i = Γ̇0

(
Γ̇N−1

Γ̇0

) i
N−1

. (S-5)

The parameters of the interpolating power-law functions ηi (γ̇) are found by inserting the

known viscosity values at the interval bounds. Thus, the following system of equations

needs to be solved:

KiΓ̇
ni−1
i−1 = η̃

(
Γ̇i−1

)
(S-6)

KiΓ̇
ni−1
i = η̃

(
Γ̇i

)
(S-7)

By division of the two equations, the power-law exponent is found to be

ni = 1 + log

 η̃
(

Γ̇i−1

)
η̃
(

Γ̇i

)
(log

(
Γ̇i−1

Γ̇i

))−1

. (S-8)

Multiplication of (S-6) by (S-7) gives an expression for the consistency index:

Ki =

√
η̃
(

Γ̇i−1

)
η̃
(

Γ̇i

)(
Γ̇i−1Γ̇i

) 1−ni
2

(S-9)

By inserting a functional form or raw data for η̃ (γ̇) into (S-8) and (S-9) the interpolation

can be performed in the entire range of shear rates.

S-1.3. Governing equations

The Navier-Stokes equations to determine the flow field ~u read

%

[
∂~u

∂t
+ (~u ·∇) ~u

]
= −∇p+ ∇ ·

(
τ
)

+ ~f , (S-10)

with the fluid mass density %, the pressure gradient ∇p, the viscous stress tensor τ , and

an external force term ~f . The viscous stress tensor is related to the viscosity and the

strain rate tensor ε via

τ = 2η (γ̇) ε , (S-11)
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where the strain rate tensor is defined as

ε = 1
2

[∇~u+ (∇~u)ᵀ] . (S-12)

Here, ∇~u denotes the dyadic product of the gradient operator and the velocity vector

and (∇~u)ᵀ its transpose. The shear rate can be obtained as invariant of the strain rate

tensor, i. e.

γ̇ =

√
2
∑
α,β

εαβεαβ . (S-13)

For a purely Newtonian fluid, the viscosity in (S-11) would be a constant.

S-1.3.1. Flow conditions. Analogously to the well-known Poiseuille flow of a Newtonian

fluid [10, pp. 180 ff.], we assume a stationary, laminar, and pressure driven flow, with the

velocity having only an axial component depending on the radial position. We consider

a cylindrical channel and neglect entrance and exit effects. For the following derivation,

a cylindrical coordinate system with a radial component r, an azimuthal component φ,

and an axial component z, is employed. In these coordinates, the flow conditions read:

~f = ~0 (S-14)

∂~u

∂t
= ~0 (S-15)

∂~u

∂z
= ~0 (S-16)

∂~u

∂φ
= ~0 (S-17)

~u (r, φ, z) = u~ez (S-18)

S-1.3.2. Constant pressure gradient. For a purely Newtionan fluid, the flow conditions

(S-14)-(S-18) imply a spatially constant pressure gradient throughout the entire channel.

In the following, we prove that the same holds for an arbitrary generalized Newtonian

fluid. The strain rate tensor in cylindrical coordinates reads:

ε = 1
2



2∂rur︸ ︷︷ ︸
(S−18)

= 0

∂ruφ +
1

r
∂φur −

1

r
uφ︸ ︷︷ ︸

(S−17),(S−18)
= 0

∂zur︸︷︷︸
(S−18)

= 0

+∂ruz

− 2∂φuφ + 2
1

r
ur︸ ︷︷ ︸

(S−17),(S−18)
= 0

1

r
∂φuz + ∂zuφ︸ ︷︷ ︸

(S−17)
= 0

− − 2∂zuz︸ ︷︷ ︸
(S−16)

= 0


(S-19)

where the notation ∂x = ∂
∂x

denotes a partial spatial derivative with respect to the

coordinate x. The ”−” signs indicate the symmetric components of the tensor. The
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underbraced terms vanish due to the flow conditions. Thus, the viscous stress tensor

reduces to a single component,

τrz = τzr = η (γ̇)
∂uz
∂r

. (S-20)

The components of the NSE yield:

∂p

∂r
= 0 (r−component) (S-21)

∂p

∂φ
= 0 (φ−component) (S-22)

∂p

∂z
=

1

r

∂

∂r
(rτrz) (z−component) (S-23)

This shows that the pressure gradient has only a z-component. By applying the

derivative ∂z again on the remaining z-component of the NSE, we obtain:

∂2
zp = ∂z

[
1

r
∂r (rη (γ̇) ∂ru)

]
(S-24)

=
1

r
∂r [r∂z (η (γ̇) ∂ru)] (S-25)

=
1

r
∂r

rη (γ̇) ∂r ∂zu︸︷︷︸
(S−17)

= 0

+r∂ru ∂zη (γ̇)︸ ︷︷ ︸
(S−17)

= 0

 = 0 (S-26)

which shows that the pressure gradient is indeed constant and allows us to define

G ..=
∂p

∂z
=

∆p

L
, (S-27)

where ∆p = pL − p0 < 0 is the pressure difference along a channel segment of length

L. Applying the flow conditions, the Navier-Stokes equations reduce to the ordinary

differential equation (1):

G =
1

r

∂

∂r

(
rη (γ̇)

∂u

∂r

)
(S-28)

This equation is however still highly non-linear due to the dependency of η (γ̇) on ∂ru

via the shear rate γ̇ (cf. (S-31), (4)).

S-1.3.3. Ansatz and boundary conditions. Similar to the piecewise viscosity model in

(S-1), we decompose the axial velocity u (r) into intervals:

u (r) =



u0 (r) 0 ≤ r < R0

...

ui (r) Ri−1 ≤ r < Ri

...

uN (r) RN−1 ≤ r <∞

(S-29)
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as illustrated in figure 1b. The essential difference between (S-1) and (S-29) is that

the interval boundaries are determined by shear rates Γ̇i for the former and by radial

positions Ri for the latter. While the interval boundaries for the viscosity Γ̇i are an

input quantity (see section S-1.2), the radial boundaries are determined a posteriori

from the shear rate profile by the condition

γ̇ (Ri) = Γ̇i (S-30)

as will be shown in (S-42) below. The shear rate as a function of the radial position

γ̇ (r) is given by the first derivative of the velocity with respect to the radial position,

i. e.

γ̇ (r) = −∂u (r)

∂r
, (S-31)

and can also be written in the same piecewise manner:

γ̇ (r) =



γ̇0 (r) 0 ≤ r < R0

...

γ̇i (r) Ri−1 ≤ r < Ri

...

γ̇N (r) RN−1 ≤ r <∞

(S-32)

As for classical Poiseuille flow, we assume the common case of the velocity monotonically

decreasing with the radial position. According to (S-31), the shear rate is therefore

always positive. For u (r) to be continuously differentiable and finite at the channel

center, the piecewise definitions of the velocity and the shear rate must be equal at the

intermediate points, Ri, i. e.

ui (Ri) = ui+1 (Ri) (S-33)

and

γ̇i (Ri) = γ̇i+1 (Ri) . (S-34)

The flow shall further fulfill a no-slip boundary condition at the cylindrical channel wall

at r = A, i. e.

u (A) = 0 . (S-35)

To ensure the continuous differentiability of the axially symmetric flow field, the flow

must have a maximum at the channel center, r = 0. Therefore, the shear rate has to

vanish at this point:

γ̇ (0) = 0 (S-36)
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S-1.4. Solution to the shear rate profile

Inserting the ansatz (S-29) and (S-32) into the Navier-Stokes equation (S-28) yields the

following system of equations, (3) and (4), where i ∈ {0, . . . , N} denotes the intervals

as above:

G =
1

r

∂

∂r
(−rKiγ̇i (r)

ni) (S-37)

γ̇i (r) = −∂ui (r)
∂r

. (S-38)

The first equation (S-37), (3), can be rearranged and integrated once to obtain

γ̇i (r) =

(
− Gr

2Ki

− ci
Kir

) 1
ni

, (S-39)

where the ci are a set of integration constants that are determined next using the

continuity conditions (S-34) and the boundary condition (S-36).

S-1.4.1. Determination of the integration constants of the shear rate profile. The

integration constants ci can be shown to be zero using the complete induction proof

described in the following. The base clause, (S-39) for i = 0 with the boundary condition

(S-36) gives

γ̇0 (0) = lim
r→0

(
− Gr

2K0

− c0

K0r

) 1
n0 !

= 0 , (S-40)

which is only fulfilled if the integration constant vanishes, thus, c0 = 0.

Assuming that ci = 0, ci+1 can be determined using the continuity condition (S-34),

γ̇i (Ri) = γ̇i+1 (Ri) = Γ̇i , (S-41)

where the Γ̇i are given. The equality Γ̇i = γ̇i (Ri) yields an expression for the radial

position Ri of the interfacial point between γ̇i (r) and γ̇i+1 (r),

Ri = −2KiΓ̇
ni
i

G
, (S-42)

that can be inserted into the second part of (S-41) using (S-39):

Γ̇i =

(
− GRi

2Ki+1

− ci+1

Ki+1Ri

) 1
ni+1

(S-43)

=

(
Ki

Ki+1

Γ̇ni
i +

ci+1G

2Ki+1KiΓ̇
ni
i

) 1
ni+1

(S-44)

Employing the continuity condition of the viscosity model (S-2) gives an expression for

the ratio of the consistency parameters, i. e.

KiΓ̇
ni−1
i = Ki+1Γ̇

ni+1−1
i (S-45)

Ki

Ki+1

= Γ̇
ni+1−ni

i . (S-46)
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Inserting (S-46) into (S-44) finally yields

Γ̇i =

(
Γ̇
ni+1

i +
ci+1G

2Ki+1KiΓ̇
ni
i

) 1
ni+1

, (S-47)

which is equal only if ci+1 = 0 thus completing the proof.

With that, the final form for the shear rate profile in the ith interval is obtained as

(cf. (5)):

γ̇i (r) =

(
− G

2Ki

r

) 1
ni

(S-48)

Note that this solution reduces to the simple power-law model solution if the index i is

dropped.

S-1.5. Solution to the velocity profile

The velocity profile is obtained by inserting (S-48), (5), into the second part of the

system of differential equations (S-38), (4), and integrating over r:

∂ui (r)

∂r
= −

(
− G

2Ki

r

) 1
ni

(S-49)

ui (r) = −
(
− G

2Ki

) 1
ni ni
ni + 1

r
1+ 1

ni + c̃i (S-50)

The integration constants c̃i are determined next using the no-slip boundary condition

(S-35) and the continuity conditions for the velocity field (S-33).

S-1.5.1. Determination of the integration constants of the velocity profile. Since the

number of intervals of the viscosity model N is independent of the choice of the flow

parameters, G and A, and this choice uniquely determines the Ri via (S-42), the outer

channel boundary R is not necessarily located in the last interval of the velocity ansatz

function uN (r). Instead, the radius of the channel lies in the kth interval, i. e.

Rk−1 ≤ A ≤ Rk , (S-51)

where 0 < k ≤ N . Intervals with i > k whose boundaries Ri lie beyond the

channel radius A have no physical significance and are disregarded in the following.

Consequently, the no-slip boundary condition applies to the kth interval:

uk (A) = −
(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk + c̃k
!

= 0 (S-52)

The integration constant can therefore easily be found as

c̃k =

(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk . (S-53)
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For i < k, the continuity condition for the velocity field (S-33) can be written as

−
(
− G

2Ki

) 1
ni ni
ni + 1

R
1+ 1

ni
i + c̃i = −

(
− G

2Ki+1

) 1
ni+1 ni+1

ni+1 + 1
R

1+ 1
ni+1

i + c̃i+1 . (S-54)

Assuming that c̃i+1 is known and rearranging this equation for c̃i yields

c̃i = c̃i+1 −Ri


(
− G

2Ki+1

) 1
ni+1

R
1

ni+1

i︸ ︷︷ ︸
= γ̇i+1(Ri) = Γ̇i

ni+1

ni+1 + 1
−
(
− G

2Ki

) 1
ni

R
1
ni
i︸ ︷︷ ︸

= γ̇i(Ri) = Γ̇i

ni
ni + 1

 , (S-55)

where the underbraced terms can be identified as the shear rates at the interfacial

position which are equal by the continuity conditions (S-34). Hence,

c̃i = c̃i+1 −RiΓ̇i

(
ni+1

ni+1 + 1
− ni
ni + 1

)
. (S-56)

Finally, inserting the expression for the known outermost integration constant, c̃k, the

interior integration constants can be determined as

c̃i = c̃k −
k−1∑
j=i

RjΓ̇j

(
nj+1

nj+1 + 1
− nj
nj + 1

)
. (S-57)

Combining (S-50), (S-53) and (S-57), the velocity profile in the ith interval is given by

(6):

ui (r) =−
(
− G

2Ki

) 1
ni ni
ni + 1

r
1+ 1

ni +

(
− G

2Kk

) 1
nk nk
nk + 1

A
1+ 1

nk

−
k−1∑
j=i

RjΓ̇j

(
nj+1

nj+1 + 1
− nj
nj + 1

)
(S-58)

S-1.6. Calculation of averages

In the following, we derive mathematical expressions for the flow rate as well as the

average shear rate, viscosity, and shear stress. The flow rate or, equivalently, the average

flow velocity determines the printing speed in 3D bioprinting processes. The average

shear rate and shear stress can be used to estimate cell damage during printing [7, 11].

S-1.6.1. Average velocity and flow rate. The cross-sectional average of the velocity field

is given by

u =
1

πA2

2π∫
0

dφ

A∫
0

dr ru (r) . (S-59)
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The first integral can be evaluated and gives a factor 2π, the second integral is split into

the intervals:

u =
2

A2

 R0∫
0

dr ru0 (r) +
k−1∑
i=1

Ri∫
Ri−1

dr rui (r) +

A∫
Rk−1

dr ruk (r)

 (S-60)

Abbreviating the prefactors in (S-50), i. e.

ui (r) = air
1+ 1

ni + c̃i , (S-61)

with

ai = −
(
− G

2Ki

) 1
ni ni
ni + 1

, (S-62)

the average velocity is found to be:

u =
2

A2

[
a0

3 + 1
n0

R
3+ 1

n0
0 +

c̃0

2
R2

0 +
k−1∑
i=1

ai
3 + 1

ni

(
R

3+ 1
ni

i −R
3+ 1

ni
i−1

)

+
k−1∑
i=1

c̃i
2

(
R2
i −R2

i−1

)
+

ak
3 + 1

nk

(
A

3+ 1
nk −R

3+ 1
nk

k−1

)
+
c̃k
2

(
A2 −R2

k−1

) ]
(S-63)

The flow rate is given by

Ω = πA2u . (S-64)

S-1.6.2. Average shear rate. The same procedure as above can be applied to find the

average shear rate. With (S-48) shortened to

γ̇i (r) = bir
1
ni , (S-65)

the average shear rate is given by:

γ̇ =
2

A2

[
b0

2 + 1
n0

R
2+ 1

n0
0 +

k−1∑
i=1

bi
2 + 1

ni

(
R

2+ 1
ni

i −R
2+ 1

ni
i−1

)
+

bk
2 + 1

nk

(
A

2+ 1
nk −R

2+ 1
nk

k−1

)]
(S-66)

S-1.6.3. Average viscosity. The viscosity field, η (r), is calculated by inserting the

shear rate field from (S-48) into the power-law definitions of the respective interpolation

interval in (S-1). Thus,

ηi (r) = Ki (γ̇i (r))
ni−1 = Ki

(
− G

2Ki

r

)1− 1
ni

, (S-67)
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which can be shortened to

ηi (r) = dir
1− 1

ni . (S-68)

Using the same procedure as above, the integral in the ith interval yields

Ri∫
Ri−1

dr rηi (r) =
di

3− 1
ni

(
R

3− 1
ni

i −R
3− 1

ni
i−1

)
(S-69)

if ni 6= 1
3

and

Ri∫
Ri−1

dr rηi (r) = di

Ri∫
Ri−1

dr r−1 = di ln

(
Ri

Ri−1

)
(S-70)

if ni = 1
3
. The average viscosity for our model is therefore given by

η =
2

A2

 R0∫
0

dr rη0 (r) +
k−1∑
i=1

Ri∫
Ri−1

dr rηi (r) +

A∫
Rk−1

dr rηk (r)

 , (S-71)

where the integrals are chosen as (S-69) or (S-70) according to ni. ‡

S-1.6.4. Average shear stress. The radial profile of the shear stress is given as the

product of the shear rate field (S-48) and the viscosity field. The latter is calculated by

inserting the shear rate field from (S-48) into the power-law definitions of the respective

interpolation interval in (S-1):

ηi (r) = Ki (γ̇i (r))
ni−1 (S-72)

The shear stress profile is therefore obtained as

σi (r) = γ̇i (r) ηi (r) = Ki (γ̇i (r))
ni

= −1
2
Gr = σ (r) , (S-73)

where the index i can be dropped since it is independent of the viscosity interpolation.

This linear relationship of shear stress and radial position is well-known for power-law

fluids [11]. Its average is found by simply solving one integral that yields:

σ =
2

A2

A∫
0

dr rσ (r) = −GA
3

(S-74)

‡ Note that in the inner-most interval with R0 as its right boundary the shear rate is always close to

zero and thus the fluid is Newtonian with n0 = 1 (see (S-3)) such that the mathematically undefined

situation of (S-70) with Ri−1 = 0 is excluded.
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S-1.7. Global analytical solution for a simplified CY model

In order to validate the algorithm presented above according to the procedure described

in section 2 of the manuscript, we calculate a global mathematical solution to the Navier-

Stokes equation (S-28), (1), for a simplified Carreau-Yasuda model. In the following,

we derive an analytical solution for the flow profiles of a CY model (cf. (9)) with the

following simplification:

η∞ = 0

a1 = a2 = 1 (S-75)

The viscosity as a function of the shear rate is therefore given as (cf. (8))

η̃ (γ̇) =
η0

1 +Kγ̇
. (S-76)

Using the same assumptions as in section S-1.3.1, the NSE yields:

G =
1

r

∂

∂r

(
−r η0γ̇

1 +Kγ̇

)
(S-77)

After a first integration and rearrangement of the equations one obtains

γ̇ (r) =
−Gr

2
− c1

r

η0 + KGr
2

+ Kc1
r

(S-78)

and application of boundary condition (S-36) determines the integration constant as

c1 = 0. Therefore, the shear rate profile is given as:

γ̇ (r) =
−Gr

2

η0 + KGr
2

= − 1
2η0
Gr

+K
(S-79)

Inserting this result into (S-38) and integrating the resulting equation gives the velocity

profile:

u (r) = −
∫

dr γ̇ (r)

=
r

K
− 2η0

GK2
ln

(
2η0

G
+Kr

)
+ c2 (S-80)

The second integration is easily found by applying the no-slip boundary condition (S-35).

Thus, the velocity profile is given by:

u (r) =
r − A
K

+
2η0

GK2
ln

(
2η0
G

+KA
2η0
G

+Kr

)
(S-81)
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S-1.8. Estimate of force and deformation experienced by flowing cells

In this section, we provide a simple approach to estimate the force sensed by a cell and

its resulting deformation during printing.

Both quantities depend on the radial position r at which the cell transitions through

the channel. Considering, in a first approximation, the cell as a sphere with radius Rc,

the shear force acting on it is given by the surface integral of the shear stress over the

sphere. Due to the linearity of the shear stress with the radial position, and as long the

cell is small compared to the channel, the force is obtained as the product of the surface

area and the shear stress at the radial position of the sphere center, as detailed next.

With the shear stress given in (S-73), the shear force acting on the cell is obtained as:

Fz =

2π∫
0

π∫
0

σ (Rsurface)R
2
c sin θ dθ dφ = 2πR2

c

π∫
0

σ (r +Rc cos θ) sin θ dθ

= 2πR2
c

(
−G

2

)
π∫

0

r sin θ dθ

︸ ︷︷ ︸
=2r

+

π∫
0

Rc cos θ sin θ dθ

︸ ︷︷ ︸
=0

 = 4πR2
c

(
−G

2
r

)

= Acell · σ (r) (S-82)

The result is depicted in figure S-1a.

Another critical quantity is the cell deformation, which can be approximated using the

shear stress and the mechanical properties of the cell. As a rough estimate, we assume

the cell to behave linearly elastic with the stress–strain relationship given as

ε (r) =
σ (r)

E
, (S-83)

where the strain ε quantifies the relative stretching of the cell. The Young’s modulus

E is chosen as 1 kPa to 10 kPa to cover the typical range of stiffness for cells [13]. This

leads to significant deformations as shown in figure S-1b which reiterates the importance

of hydrodynamic shear forces in bioprinting.
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Figure S-1. (a) The force F acting on cells as radial function according to (S-82).

(b) The strain according to (S-83) as a deformation measure for a linear elastic cell.

The corresponding flow profile is shown in fig. 3. We note that the assumption of

linear elasticity predicts relatively large deformations, which would not be the case for

a more realistic, strain-hardening behavior.

0

1

2

3

4

0

100

200

300

1 1
2 0 1

2 1

F
[µ
N
]

(a)

(b)

st
ra
in

ε
[%

]

r/A

E = 1kPa
E = 10 kPa



15

S-1.9. Inclusion of wall-slip effects

Wall-slip effects are sometimes reported, especially for fluids exhibiting non-Newtonian

behavior [12] or highly hydrophobic channel coatings. The general approach to include

a velocity slip at a wall is to allow for a finite tangential velocity at this point or,

equivalently, to shift (in the calculations) the channel wall further outwards by a distance

known as the slip length. It is thus straightforward to incorporate slip effects into our

calculations if the slip length is known.

Alternatively, if the slip velocity next to the wall is known instead of the slip length,

simply shifting upwards the computed no-slip velocity profile by a constant value

represents a very good approximation. The shear rate would stay unchanged, and

likewise the viscosity and the shear stress. Therefore, the inclusion of slip effects in our

algorithm would be unproblematic.

S-2. Additional experimental validation of the algorithm

S-2.1. Additional experiments

In this section, we provide more validation to our algorithm with experimental

measurements. Using the same approach as detailed in 2.3 of the manuscript, we

performed velocity profile measurements of 2 % alginate at 100, 200, and 300 kPa, of

3 % alginate at 300, 400, and 500 kPa, and 3 % chitosan at 300, and 400 kPa. These

measurements as well as the velocity profiles calculated using our Lattice Boltzmann

method are depicted in figure S-2, showing good agreement. Since the pressure drop in

the connectors and tubings is unknown but depends on the rheology of the hydrogel, we

assume a constant pressure drop before the microchannel of 21 % for 2 % alginate, 10 %

for 3 % alginate, and 23 % for 3 % chitosan, respectively. Additionally, we measured

the flow profile of 3 % alginate in a rectangular microchannel with 1000 µm × 200 µm

cross section. Due to limitations of the field of view of the microscope, less than

one half of the channel could be focused during the measurements. In figure S-3, the

mirrored experimentally measured velocity profile is shown in comparison to our Lattice

Boltzmann calculations. Due to connectors and tubing with a diameter of approximately

the size of the microchannel, the pressure drop of 48 % is reasonable.

S-2.2. Error quantification

In the following, we present an error calculation for the different flow experiments. First,

we calculate an averaged velocity profile for the measurements as well as our calculations

by averaging the data in a given d-interval. For the square channel, we choose a bin

width of dbin = 7.31 µm (corresponding to Nbins = 26 bins in the range of d = −95 µm

to 95 µm), for the rectangular channel dbin = 16.3 µm (corresponding to Nbins = 26 bins
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Figure S-2. Experimentally measured velocity profiles in a 190 µm × 190 µm

microchannel in comparison to numerical results using the Lattice Boltzmann method.

(a, c, e) 2 % alginate at 100, 200, and 300 kPa. (b, d, f) 3 % alginate at 300, 400, and

500 kPa. (g, h) 3 % chitosan at 300 and 400 kPa.
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in the range of d = 75 µm to 500 µm). The average velocity in each bin is computed by

ui =
1

Ni

Ni∑
k=1

uk , (S-84)
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Figure S-3. Experimentally measured velocity profiles of 3 % alginate at 400 and

500 kPa in a 1 mm × 200 µm microchannel in comparison to numerical results using

the Lattice Boltzmann method. The experimental data is mirrored with respect to the

channel center.
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where Ni is the number of data points in the i-th bin. Using this approach, we

additionally calculate the standard deviation of the data from the average value as

σu,i =

(
1

Ni − 1

Ni∑
k=1

(uk − ui)2

)1
2

. (S-85)

Using the averaged profiles, we calculate the relative error between measurement and

Lattice Boltzmann computation as:

ε =

 1

Nbins

Nbins∑
k=1

(
uExp
k − uLB

k

)2

(
uLB

max

)2


1
2

(S-86)

The averaged profiles with a range of ±σu,i are shown in figure S-4 for the square

microchannel and in figure S-5 for the rectangular microchannel, where we find relative

errors in the range of ε = 3.3 % to 13.5 %, and ε = 2 %, respectively.



18

Figure S-4. Averaged profiles from figure S-2. The gray area indicates the range

of one standard deviation from the mean curve. ε gives the relative error calculated

according to (S-86).
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Figure S-5. Averaged profiles from figure S-3. The gray area indicates the range

of one standard deviation from the mean curve. ε gives the relative error calculated

according to (S-86).
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S-3. Computational procedure and user guide

This section describes the structure and usage of the Python classes, found in the

Supplementary Material, that implement the presented algorithm for the Carreau-

Yasuda model. The first part gives an overview of the four implemented Python classes.

The second part provides a short user guide explaining how to use the classes for flow

profile calculations. Note that their usage requires a Python (version 2 or 3) installation

[14, 15]. The use of a Python IDE, e. g. Spyder [16], Thonny [17] or PyCharm [18], is

optional but can be advantageous. The coloring in the code examples is the following:

blue denotes classes, green denotes variables, and gray means a comment.

For the Carreau-Yasuda model [19] the viscosity is given by

η̃ (γ̇) = η̃∞ +
η̃0 − η̃∞

[1 + (Kγ̇)a1 ]
a2
a1

, (S-87)

where η̃0 and η̃∞ are the viscosities in the limit of zero and infinite shear rates and K

is a time constant with the unit s. Its inverse, K−1 = γ̇c, is sometimes referred to as

corner shear rate and determines the transition to the zero-shear Newtonian plateau.

The exponents a1 and a2 determine the shape of the transition between the zero-shear

Newtonian plateau and the power-law region as well as the power-law behavior.

S-3.1. Overview of Python classes

The tool uses four classes that hold the input parameters, perform the calculations and

save or plot output data. They can be found in the file CYprofiles.py. The four classes

are:

(i) Analytical Viscosity(): instances of this class hold the parameters of the

Carreau-Yasuda model and can calculate the viscosity for a given shear rate

according to (S-87).

(ii) Interpolation(): instances of this class perform the interpolation of a given

Analytical Viscosity() in a provided range of shear rates using the partitioning

described in section S-1.2.

(iii) Printing Parameters(): instances of this class hold the printing parameters, i.e.

the nozzle radius and the pressure gradient or the flow rate.

(iv) Profiles(): instances of this class perform the calculation of the velocity, shear

rate, and viscosity profile for given Interpolation() and Printing Parameters()

according to the presented algorithm. If a flow rate is provided, the corresponding

pressure gradient is calculated iteratively to match the given flow rate.

S-3.2. User guide

This section is meant to serve as an explanatory tutorial for our Python tool. It

will cover the two main steps necessary for calculating a flow profile: the viscosity
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interpolation according to section S-1.2 and the profile calculation according to the

presented algorithm. The following code examples can be found in the file tutorial.py.

Step 1 - Performing the interpolation Starting point for the viscosity interpolation is

the Carreau-Yasuda model. After fitting rheological data, the values of its parameters

in (S-87) are known. The Analytical Viscosity() is then initialized by:

# initialize variables

eta0 = 1.0e2 =̂ η̃0 [Pa s]

etainf = 1.0e-3 =̂ η̃∞ [Pa s]

K = 1.0e-3 =̂ K [s]

a1 = 0.3 =̂ a1

a2 = 0.9 =̂ a2

# initialize Analytical Viscosity instance

analytical = Analytical Viscosity( eta0=eta0, etainf=etainf,K=K,a1=a1,a2=a2 )

To perform the interpolation, the range of shear rates to interpolate and the number of

(power-law) intervals is required:

# initialize variables

gamma0 = 1.0e-6 =̂ Γ̇0 [s−1]

gammaN = 1.0e6 =̂ Γ̇N−1 [s−1]

Ninterpol = 100 =̂ N − 1

# initialize Interpolation instance

interpol= Interpolation(gamma0=gamma0, gammaN=gammaN,

Ninterpol=Ninterpol, analytical=analytical)

The calculation is then simply performed by executing

interpol.calculate interpolation()

and the interpolation can be checked by plotting the calculated data via

interpol.plot interpolation() .

To save the viscosity interpolation, one can use

interpol.save interpolation(file)

to save the data in viscosity-shear rate format and

interpol.save interpolation parameters(file)

to save the power-law parameters for all intervals in a file.
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Step 2 - Calculating the flow profile Once the interpolation is completed, the next step

is the definition of the printing parameters, i. e. the channel radius and the pressure

gradient. This is done by:

# initialize variables

rchannel = 1.0e-4 =̂ A [m]

pgrad = -1.0e7 =̂ G [Pa m−1]

# initialize Printing Parameters instance

printparams = Printing Parameters(

pressureGradient=pgrad, channelRadius=rchannel)

To calculate the radial profiles for the velocity (in m s−1), the shear rate (in s−1), and

the viscosity (in Pa s), the Profiles() class is initialized with printing parameters and

an interpolation by

# initialize Profiles instance

fluidprofiles = Profiles(

interpolation=interpol, printingParameters=printparams)

Finally, the calculation is performed by executing

fluidprofiles.calculate profiles()

and the data can be plotted using the following methods:

fluidprofiles.plot velocity()

fluidprofiles.plot shearrate()

fluidprofiles.plot shearstress()

fluidprofiles.plot viscosity()

The data for all calculated fields is saved to a file with

fluidprofiles.save profiles(file)

and

fluidprofiles.save averages(file)

for the averaged quantities, respectively.

In the case of an imposed flow rate, i. e. if the pressure gradient is unknown, our tool

automatically computes the corresponding pressure gradient necessary for the profile

calculation. To do so, solely the initialization of the printing parameters changes as

follows:

# initialize variables

rchannel = 1.0e-4 =̂ A [m]

flowrate = 1.0e-9 =̂ Ω [m3 s−1]
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# initialize Printing Parameters instance

printparams = Printing Parameters(

flowrate=flowrate, channelRadius=rchannel)

S-4. Lattice Boltzmann algorithm for generalized Newtonian fluids

This section briefly summarizes the Lattice Boltzmann method and the extension we

added to the open-source package ESPResSo [20]. For an introduction into the Lattice

Boltzmann method we refer the interested reader to the book by Krüger et al.[21]. The

Lattice Boltzmann equation for the multiple relaxation time scheme used in ESPResSo

reads:

fi (~x+ ~ci∆t, t+ ∆t)− fi (~x, t) =
18∑
j=0

(
M−1ωM

)
ij

(fj (~x, t)− f eq
i (~x, t)) (S-88)

It describes the collision and streaming of the population distribution fi (i = 0, . . . , 18)

during one time step ∆t. Here, ~ci are the discretized lattice velocities, M denotes

transformation matrix that maps the populations onto moment space, ω is the diagonal

relaxation frequency matrix, and f eq
i denote the equilibrium population distributions.

The relaxation frequency for the shear moments ωS is related to the dynamic viscosity

of the fluid via [22]

η = %c2
s

(
1

ωS

− 1
2

)
∆t , (S-89)

with the fluid mass density % and the lattice speed of sound cs. The calculation of the

viscosity according to the rheological model requires the local shear rate at each lattice

node. Chai et al [22] showed that the local strain rate tensor can be obtained from the

populations by

εαβ = − 1

2%c2
s∆t

18∑
i,j=0

[
(~ci)α (~ci)β

(
M−1ωM

)
ij

(fj (~x, t)− f eq
i (~x, t))

]
. (S-90)

The shear rate is then obtained as invariant of the strain rate tensor according to (S-13).

From the local shear rate, the viscosity according to the rheological model and the local

relaxation time according to (S-89) are computed at each lattice node and updated in

every time step.

In order to ensure simulation stability, we choose the time step globally according to

Krüger et al [21, p. 273] as

∆t = c2
s

(
τ − 1

2

) ∆x2

ν?
=

∆x2

6ν?
, (S-91)

with c2
s = 1

3
, a global relaxation parameter τ = 1, and a reference kinematic viscosity

ν?. The latter is provided, for instance, by the upper Newtonian viscosity plateau of



REFERENCES 24

the corresponding CY model.

At the boundary of the cylindrical channel a bounce-back algorithm is applied to realize

a no-slip boundary condition. The flow is driven by a pressure gradient along the z-

direction, which is realized as external force density in the algorithm.
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