S2 Appendix.

Document Vectors (Doc2Vec)

One recent advance in NLP which utilises neural networks is Document Vectors,
introduced by [28]. This is a straightforward extension of the word2vec model of [26/27].
The word2vec model attempts to rectify one of the well-known problems of NLP: the
inability of “one-hot” word vectors to account for word similarity. Typically, word
vectors are represented as sparse vectors. For example, in a complete vocabulary of
[“good”, “fair”, “fine”], the word good would be represented as the vector [1,0, 0], fair
as [0, 1, 0] and fine as [0,0,1]. Clearly, each of these vectors are orthogonal to each other
and have a similarity of 0. Instead of using this class of word vectors, word2vec tries to
represent words as dense vectors that encode such similarities; a word2vec vector for
each of the three words [“good”, “fair”, “fine”] will have a high similarity.

The way that this is done is through looking at the context of a word. For example,
for the sentence “Provides for unattended file transfers”, the word “unattended” has the
context [“Provides”, “for”, “file”, “transfers”’]. We want to represent each of these
words as a vector of arbitrary dimension n. One way to account for context is to predict
the context words given the target (Skip-gram); while another way is to predict the
target word given the context (Continuous Bag-of~-Words). Under Skip-gram, the
optimization problem is to maximise the probability of any context word given the
current center word. So the objective function is given by:

14
J(G)z—%z Z log p(wi+j|we)

t=1 —m<j<m

Where 6 represents all parameters: input vector (“one-hot”) representation of each
word, and the output word2vec representation of each word. m represents the length of
the context window; for example m = 1 gives the context for “unattended” as [“for”,
“file”]. The objective function is minimized using stochastic gradient descent.

12Including very common and very infrequent terms may introduce noise and considerable increases
in computation times.

Document Vectors, or Doc2Vec, extends word2vec merely by adding an additional
variable, which will be treated as an additional context vector: document ID. For my
data, this will be the patent number, which uniquely identifies every abstract document.
Thus, including document ID as an additional word for each context generated from
that document text will also generate a unique vector associated with the document, as
well as the word vectors. Intuitively, the document vector will represent what was
learned in other context windows belonging to the document text, outside of the present
context window: that is, it “acts as a memory that remembers what is missing from the
current context.” ([28])

Such an approach has been shown to be extremely powerful in accurately capturing
cross-word and cross-document similarity, which is why it is the main focus of my
analysis. Other vector representations of patents that I use do not specifically optimize
to capture such similarity using contexts.

