
Reproducibility of Individual Effect Sizes in
Meta-Analyses in Psychology

Supplement C
Formulas and Methods

Supplement C contains for each meta-analysis separately the sections which
contain the relevant information for effect size calculation (e.g., formulas) and
meta-analytic estimation (e.g., which program was used), including the page
on which the information was found. We also extracted the type of effect size,
the main hypothesis, and the direction of the effect if possible. Each paragraph
starting with Note are our comments related to the decision-making process.
After our comments we state the formulas we used to calculate the effect sizes.

MA1: Adesope & Nesbit (2011)

p.253 For each study included in this meta-analysis, we obtained Cohen’s d ef-
fect size, a standardized estimate of the difference in achievement scores between
students who learned with spoken–written presentations compared with those
who learned with either spoken-only or written-only presentations. Specifically,
Cohen’s d was calculated as the difference between the experimental (spoken-
written presentations) and control (spoken-only or written-only presentations)
mean scores divided by the pooled standard deviation of the two groups.

Because differential sample sizes across studies may bias the effect size ob-
tained by Cohen’s d, Hedges and Olkin (1985) proposed the use of Hedges’s g
to reduce the bias. Hedges’s g (Hedges, 1981; Hedges & Olkin, 1985, p. 81)
was computed and reported throughout this meta-analysis as an unbiased esti-
mate of the standardized mean difference effect size. In a few cases where basic
descriptive statistics were not provided, effect sizes were estimated from other
statistics provided in the studies using conversion formulas (Cooper & Hedges,
1994; Glass, McGaw, & Smith, 1981).

Data were analyzed using Comprehensive Meta-Analysis 2.2.048 (Boren-
stein, Hedges, Higgins, & Rothstein, 2008) and SPSS Version 18 for Windows.
The weighted mean effect sizes were aggregated to form an overall weighted
mean estimate of the effect of learning with spoken–written presentations (i.e.,
g+). This approach allowed more weight to be assigned to studies with larger
sample sizes.

Positive effect sizes indicate benefits of spoken–written verbal presentations
over spoken-only or written-only presentations.

Note: the authors do not indicate whether they used a fixed effect or random-
effects model. We estimated both. For the random-effects analysis, we used the
DerSimonian and Laird (DL) estimation method in the metafor package in R,
since this method is the standard estimation method in Comprehensive Meta-
Analysis. When we tried to reproduce results, we assumed the meta-analytic
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authors used a random-effects model.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Hedges and Olkin, 1985, p.78

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Hedges and Olkin, 1985, p.79

J = 1− 3

4N − 9
, Hedges and Olkin, 1985, p.81

g = J × d, Hedges and Olkin, 1985, p.81

d = ±

√
F (n1 + n2)

n1n2
, Cooper, Hedges, and Valentine, 2009, p.228

OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

MA2: Alfieri et al. (2011)

p.6 Computation formulae included within the CMA program allowed for direct
entry of group statistics to calculate effect sizes for each test-by-test comparison.
When the only statistics available were F values and group means, DSTAT
(Johnson, 1993) allowed us to convert those statistics to a common metric, g,
which represents the difference in standard deviation units. More specifically,
g is computed by calculating the difference of the two means divided by the
pooled standard deviation of the two samples (e.g., the difference between two
groups’ mean reaction times, divided by the pooled standard deviation). Those
g scores and other group statistics were then entered into the CMA program.
For analyses at the level of studies, overall g statistics were calculated in DSTAT
before entry into the CMA program. Because g values may “overestimate the
population effect size” when samples are small (Johnson, 1993, p. 19), Cohen’s
d values are reported here as calculated by the CMA program.

Effects sizes were coded so that a negative effect size indicates that partici-
pants in the compared instructional conditions evidenced greater learning than
participants in discovery conditions, whereas a positive effect size indicates that
participants in the discovery conditions evidenced greater learning than partic-
ipants in the compared instructional conditions.

Given the great variety of discovery learning designs and the variety of un-
determined factors involved in any potential effects, a random effects model
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was used in all analyses in the Comprehensive Meta-Analysis Version 2 (CMA)
program (Borenstein, Hedges, Higgins, & Rothstein, 2005).

For analyses at the level of studies, overall g statistics were calculated in
DSTAT before entry into the CMA program.

Note: we assumed the authors calculated Hedges’ g instead of Cohen’s d,
since they state they corrected for small sample bias. CMA formulas can be
found in Borenstein, Hedges, Higgins, and Rothstein, 2009: https://www.meta-
analysis.com/pages/formulas.php. We found effects for which no transformation
formulas were available- in those cases, other standard formulas from Cooper
and Hedges (1994), andCohen, 1988 were used to reproduce the effect sizes.
We used the DerSimonian and Laird (DL) estimation method in the metafor
package in R for the random-effects analysis, since this method is the standard
estimation method in Comprehensive Meta-Analysis.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Borenstein et al., 2009, f.4.18

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Borenstein et al., 2009, f.4.19

J = 1− 3

4df − 1

where df for two independent groups is n1+n2-2, Borenstein et al., 2009, f.4.22

g = J × d, Borenstein et al., 2009, f.4.23

d = ±

√
F (n1 + n2)

n1n2
, Cooper et al., 2009, p.228

OR =
AD

BC
, Borenstein et al., 2009, f.5.8

d = log(OR)×
√

3

π
, Borenstein et al., 2009, f.7.1

d = t

√
nt + nc
ntnc

, Cooper et al., 2009, p.228

φ =

√
χ2(1)

N
, Cohen, 1988, f.7.2.5

d =
2r√

1− r2
, Borenstein et al., 2009, f.7.5
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MA3: Babbage et al. (2011)

p.280 Standardized mean difference effect sizes were calculated for 12 of the 13
studies, using formulae 3.21 from Lipsey and Wilson (2001, p. 48). In one study
(Jackson & Moffat, 1987) means and standard deviations were not reported, so
the standardized mean difference was instead calculated from the F -ratio from
their two-group one way analysis of variance (see Lipsey & Wilson, 2001, for
the procedure.) This effect size has been demonstrated to show positive bias
when based on smaller sample sizes, and in particular where the sample is fewer
than 20 participants (Hedges, 1981). Given the small sample sizes in the studies
examined, most of which were based on fewer than 20 participants, the use of
Hedges’ unbiased effect size (g) was calculated for all studies, using formulae
3.22 to 3.24 from Lipsey and Wilson (2001; see pp. 48–50, also for discussion of
this correction for studies with small n).

p.278 Regardless of task, persons with TBI have been repeatedly shown to
perform more poorly than healthy controls.

p.281 To determine the effect size mean and distribution, a mean weighted
by the inverse variance weights was calculated. Initially a fixed effects model
was examined, which assumed that all variability observed was random error
only associated with participant-level sampling error (Lipsey & Wilson, 2001).
However, homogeneity analysis indicated this model was not a suitable fit for
the data observed (Q = 29.54, Qcrit = 22.36). Therefore, a random effects
model (method of moments) was examined, allowing for variability that was
beyond simple participant-sampling error, which related to random differences
at a study level that could not be formally identified (see Lipsey & Wilson, 2001,
pp. 115–121).

Note: we reversed the effect sizes for this meta-analysis, so positive effect
sizes indicate better performance for control groups, as is hypothesized by the
authors. We used the DerSimonian and Laird estimator in the metafor package
in R, since this is a method of moments based approach, which coincides with
the Lipsey and Wilson (2001) reference.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Lipsey and Wilson, 2000, p.48

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Lipsey and Wilson, 2000, p.47

J = 1− 3

4N − 9
, Lipsey and Wilson, 2000, p.49

g = J × d, Lipsey and Wilson, 2000, p.49
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MA4: Balliet et al. (2011)

p.887 We used the d value as the measure of effect size. The d value is the
difference between two means divided by the pooled standard deviation and is
corrected for sample size bias (Hedges & Olkin, 1985). The d value for each
study was calculated by using the mean difference and standard deviations for
men versus women, but when these descriptive statistics were unavailable we
calculated d by using a t score, F score, chisquare value, or rates of cooperation.
When a study included a manipulated variable, we coded the overall main effect
of gender across experimental conditions.

Women were coded as 1, and men were coded as 2 so that a positive d value
indicates greater cooperation by men, relative to women, whereas a negative d
value is telling of greater cooperation by women compared to men. All results
of resource or take-some dilemmas are reverse coded to indicate that less taking
equals greater cooperation. Several articles reported a null relationship between
sex and cooperation, but failed to provide the statistics necessary to calculate
the effect size. We estimated that these studies had an effect size of zero.

In our analysis, we first estimate the overall effect size using a random effects
model, along with both the 95% confidence interval and the 90% prediction
interval.

Analyses were conducted using Hedges and Olkin’s (1985) approach with
the Comprehensive Meta-Analysis Software.

Note: we assumed the authors calculated Hedges’ g instead of Cohen’s d,
since they state they corrected for small sample bias. We found effects for which
no transformation formulas were available- in those cases, other standard for-
mulas from Cooper and Hedges (1994) were used to reproduce the effect sizes.
The authors do not explicitly state a hypothesized direction of the effect. They
present two arguments, one in favor of women being more cooperative in same
sex interactions, one in favor of men being more so. For mixed sex interactions,
the authors tend to slightly lean towards women being more cooperative. Since
we did not want to deviate from the original meta-analysis if not needed, we de-
cided to not reverse code the effect, so a positive effect indicates men being more
cooperative than women. For the random-effects analysis, the authors state they
used the Hedges & Olkin (HE) approach with the Comprehensive Meta-Analysis
(CMA) software, but CMA only offers a DerSimonian-Laird (DL) or Maximum
Likelihood (ML) estimator. The difference between the HE and DL methods
(which are both method of moments estimators) is that HE is based on the un-
eweighted variance of treatment effect estimates, whereas DL is based on their
weighted variance (Veroniki et al. (2016)). Since the DL method is the standard
estimation method in CMA, and it resembles the HE method, we used the DL
estimator in the metafor package in R.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Hedges and Olkin, 1985, p.78
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s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Hedges and Olkin, 1985, p.79

J = 1− 3

4N − 9
, Hedges and Olkin, 1985, p.81

g = J × d, Hedges and Olkin, 1985, p.81

d = ±

√
F (n1 + n2)

n1n2
, Cooper et al., 2009, p.228

OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

d = t

√
nt + nc
ntnc

, Cooper et al., 2009, p.228

d =
2r√

1− r2
, Borenstein et al., 2009, f.7.5

ry1 = β1 + r12(ry2 − β1r12), Peterson and Brown, 2005, p.177

MA5: Benish et al. (2011)

p.283 The effect sizes (Cohen’s d) and variance were calculated for each outcome
measure, within each study before aggregating across outcome variables within
each treatment, using standard meta-analytic procedures outlined by Hedges
and Olkin (1985). If a primary study included more than two bona fide treat-
ments, separate effect sizes were computed between comparisons of a culturally
adapted treatment (Tx A) to unadapted treatments (i.e., A to B and A to C).
Each direct comparison of culturally adapted psychotherapy to unadapted bona
fide treatment provided one aggregate effect size in the analysis.

A random-effects model was used for the analysis, under the assumption that
studies were sampled from a larger population of studies (Hedges & Olkin, 1985).
Effect sizes were calculated in the standard manner by subtracting the mean of
the unadapted treatments from the mean of the adapted treatment (and scaling
so that a positive effect indicated superiority of the adapted treatment) and
dividing by the pooled standard deviation. These effects then were corrected
for bias (Hedges & Olkin, 1985).

p.282 The analysis of primary measures was conducted following an analy-
sis incorporating all outcome measures, including both primary and secondary
measures. Due to the fact that data from multiple outcome measures of the
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same clients are not independent, the data from outcome measures were ag-
gregated to account for dependence using the methods described by Wampold
et al., 1997.

Note: we assumed the authors calculated Hedges’ g instead of Cohen’s d,
since they state they corrected for (small sample) bias. We used the Hedges
estimator in the metafor package in R, which is referenced in Hedges and Olkin
(1985).

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Hedges and Olkin, 1985, p.78

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Hedges and Olkin, 1985, p.79

J = 1− 3

4N − 9
, Hedges and Olkin, 1985, p.81

g = J × d, Hedges and Olkin, 1985, p.81

d = ±

√
F (n1 + n2)

n1n2
, Cooper et al., 2009, p.228

vard =
( (nc+nt)

ncnt
)

( d2

2×(nc+nt)
)

, Wampold et al., 1997, f.3

dagg =
Σ( d

vard
)

Σ( 1
vard

)
, Wampold et al., 1997, f.6

MA6: Berry, Carpenter, & Barrat (2012)

p.618 For each sample, the correlation between (a) self- and other-reports of
CWB and/or (b) the correlation between other-reports of CWB and CWB corre-
lates was coded. In cases in which relationships with the overall CWB construct
were of interest but multiple facets of the overall construct were offered within
the same sample (e.g., both interpersonal- and organizational target CWB mea-
sures, which are multiple facets of overall CWB, listed for the same sample),
composite formulas (Ghiselli, Campbell, & Zedeck, 1981, pp. 163–164) were
used to estimate correlations with a composite of the multiple measures. The
mean and standard deviation of CWB reported by self- and other-raters was
also coded for use in calculating standardized mean differences in CWB between
self- and other-ratings. It should be noted that an explicit search for studies
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reporting mean differences between self- and other-reported CWB was not car-
ried out; instead, mean differences were coded in the correlational studies that
provided relevant means and standard deviations.

Hunter and Schmidt’s (2004) meta-analysis methods were used for meta-
analyses of correlations and d values. Corrections for two statistical artifacts
were made. First, point-biserial correlations involving the variable “gender”
were individually corrected to what they would be if each sample had a 50–50
gender split (see Table A2 for gender splits for samples). Second, correlations
and d values were corrected for unreliability in both the predictor and the
criterion using the artifact distribution method (see Table 2 for predictor and
criterion reliability artifact distributions and their sources).

p.619, footnote 3 So, for the sake of comparability with the previous meta-
analyses in which alpha coefficients were used in CWB corrections, the results
in our tables are based on the correlations corrected using alpha coefficients,
and we mostly focus our discussion on those estimates.

p.615 Hypothesis 1: The correlation between self- and other-ratings of CWB
will be positive and greater than zero but will not reach unity.

Note: we were unable to locate the Ghiselli et al. text. We took the average
when multiple measures were combined and we could not find any of the inter-
correlations between the CWB-O and CWB-I measures; this is the same strategy
used in the next meta-analysis (which has the same first author). In our sample,
there were no instances where multiple measures had to be combined and inter-
correlations between constructs were available. We did make corrections in the
correlations using the artifact distribution method. The authors do not indicate
whether they used a fixed effect or random-effects model. We estimated both.
For the random-effects meta-analysis, we used the Hunter & Schmidt estima-
tion method in the metafor package in R.

The meta-analysis uses effect size r.

a =
√
rxx, b =

√
ryy , Hunter and Schmidt, 2004, p.150

rcorrected =
runcorrected

a× b
, Hunter and Schmidt, 2004, p.151

MA7: Berry, Clark, & McClure (2011)

p.887 For each independent sample, the correlation between the cognitive ability
test and performance criterion was coded, along with the racial/ethnic subgroup
and sample size. If multiple cognitive ability tests (e.g., SAT Verbal and SAT
Mathematical scores) and/or multiple related performance criteria (e.g., sub-
jective performance ratings and an objective performance index) were included
within a single sample, composite formulas (Ghiselli, Campbell, & Zedeck, 1981,
pp. 163–164) were used to estimate the correlation between a composite of the
multiple tests and/or the multiple criterion measures when intercorrelations
among multiple predictors and/or criteria were provided. If intercorrelations
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were not provided, the multipredictor– criterion correlations were combined by
averaging predictor– criterion correlations across the multiple tests/criteria.

p.889 Formulas presented by Hunter and Schmidt (2004) were used to cal-
culate meta-analytic mean correlations, standard deviations, and percentage of
variance due to sampling error. Additionally, confidence intervals around mean
correlations were calculated with formulas provided by Whitener (1990).

Note: we were unable to locate the Ghiselli et al. text. When multiple mea-
sures had to be combined and intercorrelations between constructs were available,
we used the Hunter and Schmidt method (2004, p.435) to aggregate. The au-
thors do not explicitly state a hypothesized direction of the effect. However,
cognitive ability test scores are generally assumed to correlate positively with
performance, and as such we decided to not recode the effect sizes. The authors
do not indicate whether they used a fixed effect or random-effects model. We
estimated both. For the random-effects meta-analysis, we used the Hunter &
Schmidt estimation method in the metafor package in R.

The meta-analysis uses effect size r.

raggregated =

∑
rxy√

n+ n(n− 1)r̄xy
, Hunter and Schmidt, 2004, p.435

where n is the number of correlations to aggregate and

r̄xy is the intercorrelation, Hunter and Schmidt, 2004, p.435

MA8: Card et al. (2011)

p.511 For this meta-analysis, we used the correlation coefficient,r, as an effect
size that represents the association between deployment and children’s adjust-
ment. Positive values indicate that children of deployed parents have more
problems than controls, whereas negative values denote that these children had
fewer problems than controls.

p.512 We coded the effect sizes from included studies by either recording
the correlations reported or computing these correlations from other reported
data using common meta-analysis equations (see Card, 2011; Rosenthal, 1991).

Given that the correlation coefficient is skewed in the population, we trans-
formed these effect sizes via Fisher’s transformation to obtain Zr. Analyses were
performed by using this transformed effect size. Results (e.g., average Zr) were
backtransformed to the more familiar r for reporting.

The general analytic strategy for each of the meta-analyses reported below
was to first compute the weighted random-effects mean effect size of the as-
sociation between deployment and adjustment (note that the random-effects
model would simplify to the fixed-effects model in the absence of heterogeneity;
for information about these models see Card, in press; Hedges & Vevea, 1998
Raudenbush, 1994).

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) were
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used to reproduce the effect sizes. The authors refer to multiple sources that
describe random-effects models, but it is unclear which estimation method they
used. The first estimation method referenced in both Hedges and Vevea (1998)
and Raudenbush (1994) is a method of moments estimation. As such, we decided
to use the DerSimonian-Laird estimator method in the metafor package in R.

The meta-analysis uses effect size r.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Card et al., 2011, p.90

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Card et al., 2011, p.124

r =
d√

d2 + a
, Cooper et al., 2009, p.234

a =
(n1 + n2)2

n1n2
, Cooper et al., 2009, p.234

Zr =
1

2
log

(1 + r)

(1− r)
, Cooper et al., 2009, p.231

r = tanh(Zr)

MA9: Crook et al. (2011)

p.446 Because the study is the unit of analysis, if a study used multiple measures
of one or more human capital measures or one or more performance measures
and reported correlations separately, the correlations were averaged to yield a
single estimate for the study (Hunter & Schmidt, 2004).

Effect size estimates were calculated as the mean of the sample size weighted
correlations (r̄) from primary studies. This estimate offers more accuracy than
estimates obtained from any one study, because positive and negative sampling
errors cancel out (Hunter & Schmidt, 2004). After sampling error, measurement
error has the largest impact on study findings. Unfortunately, most human
capital studies do not report reliability coefficients, making it impossible to
correct each study individually for measurement error. Thus, we used the mean
of the available reliabilities to correct r̄ (i.e., r̄c) according to formulas offered
by Hunter and Schmidt (2004). In particular, the average reliability for human
capital (r̄xx) is .81, and the average reliability for performance (r̄yy) is .91.
Following Hunter and Schmidt, we corrected r̄ according to:

r̄c =
r̄√

r̄xx
√
r̄yy

wherein we took the product of the square roots of the available reliabilities.
Thus, we used .82 to correct r̄.
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p.444 Hypothesis 1: Human capital is positively related to performance.
p.450 All chi-square statistics are significant; thus, we assume residual vari-

ance is heterogeneous for all results.

Note: the authors do not indicate whether they used a fixed effect or random-
effects model. We estimated both. We used no specific formulas for this meta-
analysis, since only single correlations or the mean of multiple correlations were
extracted or calculated. To get an overall estimate, we took the mean of the
sample size weighted correlations. This estimate is used as an overall effect
size. Afterwards we attenuated for measurement error by dividing this estimate
by the square root of the two reported reliability estimates of human capital and
performance. The authors report this estimate to be 0.82, but if we follow the
printed formula we multiply the square root of 0.81 with the square root of 0.91,
making it 0.86. We will be using this latter estimate in our calculations for
the confidence interval. Since the authors find statistically significant chi-square
result, they assume the studies are heterogeneous, meaning they calculate the
following standard error for the confidence interval from Whitener, 1990:

SE = ([(1− r̄2)2/(N −K)] + (SD2
res/K))1/2

where r̄ is the sample-size weighted mean uncorrected correlation, N is the
total sample size, K is the number of studies, and SD2

res is the residual vari-
ance of the observed correlations after the variance for sampling error has been
removed. This variance has not been corrected for other artifacts such as mea-
surement error or range restriction:

Whitener (1990, p.316). The confidence interval generated using the stan-
dard error reflects the effects of sampling error and is therefore applied to sample-
size weighted mean effect sizes that have not been corrected for research artifacts.
The estimation of confidence intervals in a meta-analysis involves two steps.
First, the sample-size weighted mean effect size and variance are calculated.
Second, confidence intervals are generated around the uncorrected, sample-size
weighted mean effect size using the standard error of the mean effect size.

Note: we calculated the variance for sampling error from Hunter & Schmidt,
2004, page 15:

S2
e =

Σi=1[Ni(1− r̄2)2/Ni − 1]

ΣNi

The meta-analysis uses effect size r.

MA10: de Wit et al. (2012)

p.366 All the effect sizes were first corrected for sampling error. Next, we cor-
rected for the measurement error in the independent and dependent variables.
This was done according to the approach developed by Hunter and Schmidt
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(1990, 2004); we divided individual effect sizes by the square root of the reli-
ability estimates of the two correlated variables. We used internal consistency
coefficients reported in the respective study as the reliability estimates. In case
the authors did not report internal consistency coefficients, the internal consis-
tency coefficient for each variable across all studies included in the meta-analysis
was used. We assigned a reliability coefficient of 1.00 to objective performance
indicators for which no reliability coefficient was reported (for similar proce-
dures, see, e.g., Riketta, 2008). In case a study provided multiple estimates of a
correlation between a predictor (X) and a criterion (Y), we used the formula for
composites (Hunter & Schmidt, 2004) to derive a linear composite of the effect
sizes to ensure the independence of effects sizes in the final data set.

The analyses were conducted using the Schmidt-Le program (Version 1.1;
Schmidt & Le, 2004). The precision of the effect sizes was examined by calcu-
lating the 95% confidence interval (CI) around the effect size. Finally, we used
the procedures described by Viechtbauer and Cheung (2010) to derive outlier
and influence diagnostics, using the Metafor meta-analysis package for R (Ver-
sion 1.4-0; Viechtbauer, 2010a, 2010b).

p.364 Hence, irrespective of the task at hand, we expect relationship and
process conflict to interfere with group functioning and to be negatively related
to both proximal and distal group outcomes (e.g., Jehn, 1995).

Note: the authors state they correct the effect sizes for sampling error, but
do not state how- we did not make any corrections in our reproduced effect
sizes related to sampling error. We did correct for measurement error if in-
ternal consistency estimates coefficients were reported. We aggregated effect
sizes when multiple estimates were found, for which we used the Hunter and
Schmidt method (2004, p.435). Since the authors expect relationship conflict
to be negatively correlated with performance and other group outcomes, we in-
versed all effect sizes so that a positive effect size is in line with the expectation
of the meta-analysts. The authors do not indicate whether they used a fixed
effect or random-effects model. We estimated both. For the random-effects
meta-analysis, we used the Hunter & Schmidt estimation method in the metafor
package in R, since methods from Hunter and Smith (2004) are used in the
Schmidt-Le software.

The meta-analysis uses effect size r.

a =
√
rxx, b =

√
ryy , Hunter and Schmidt, 2004, p.150

rcorrected =
runcorrected

a× b
, Hunter and Schmidt, 2004, p.151

raggregated =

∑
rxy√

n+ n(n− 1)r̄xy

where n is the number of correlations to aggregate and

r̄xy is the intercorrelation, Hunter and Schmidt, 2004, p.435
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MA11: Else-Quest et al. (2012)

p.952 Formulae for the effect size and homogeneity tests were taken from Ja-
cobCohen, 1988 and Lipsey and Wilson (2001). The effect size d was computed
by subtracting the mean score for women from the mean score for men, divided
by the within-groups standard deviation. Means and standard deviations were
available for 571 of the 697 effects. For 126 of the effects, other usable statistics
(e.g., Pearson correlations, t tests, F tests) were provided or obtained. These
were converted to d according to the formulae provided by Cohen. Positive val-
ues of d represent higher scores for men than women, whereas negative values
represent higher scores for women.

p.951 Parallel to consistent empirical findings in gendered emotion stereo-
types, gender role socialization, and gender differences in self-esteem (general
and domain specific) and psychopathology, we predicted greater pride (both
hubristic and authentic) in men than in women, as well as greater shame, guilt,
and embarrassment in women than in men.

p.952 Uncorrected effect sizes for shame, guilt, embarrassment, authentic
pride, and hubristic pride appear in Tables 1, 2, 3, 4, and 5, respectively, along
with corresponding study information. For the estimation of population effect
sizes, all effect sizes were corrected for bias with the formula provided by Hedges
and Becker (1986).

Note: the formula for the pooled standard deviation is slightly different in
Cohen (1988, f.2.5.2) and we do not have acces to the raw data, so cannot use
that formula. Since we wanted to reproduce the effect sizes of authentic pride
from Table 4, which are uncorrected, we attempted to calculate Cohen’s d, and
we did not correct for small sample bias. Since we are not interested in modera-
tors, we estimated a random-effects model for the meta-analytic estimates. We
used the DerSimonian and Laird estimator in the metafor package in R, which
coincides with the Lipsey and Wilson (2001) reference.

The meta-analysis uses effect size d.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Lipsey and Wilson, 2000, p.48

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Lipsey and Wilson, 2000, p.47

φ =

√
χ2(1)

N
, Cohen, 1988, f.7.2.5

d =
rpb√

p(1− p)(1− r2pb)

where p is the propotion of subjects in group 1, and 1-p is the proportion of subjects

in group 2, Lipsey and Wilson, 2000, p.62
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d = 2

√
F

N
, Lipsey and Wilson, 2000, p.174

MA12: Farber & Doolin (2011)

p.61 Because the purpose of this meta-analysis was to examine the relation
between therapist positive regard and treatment outcome, a simple correlation,
r, was obtained to measure the effect for each study. The effect sizes for several
studies had to be recomputed using the data the authors provided and then
converted to r (per Cooper, Hedges, & Valentine, 2009). After each study was
coded for the moderator variables, effect sizes were again computed for each of
the 18 studies. Additionally, if there was more than one effect size per study,
within-study aggregation was performed (see Del Re, 2010; Del Re & Hoyt,
2010).

The aggregate effect size was .27 (p <.000; N = 1067), indicating that
positive regard has a moderate association with psychotherapy outcomes; only
two of the 18 studies had negative effect sizes. This number represents the
random, weighted effect.

Note: we found effects for which no transformation formulas were available-
in those cases, we used other standard formulas fromCohen, 1988. We used the
the Hunter and Schmidt method (2004, p.435) to aggregate, which is used in the
MAc package in R, which the authors reference. The authors do not explicitly
state a hypothesized direction of the effect. However, positive regard (or warmth)
is generally assumed to correlate positivily with therapeutic outcome, and as such
we decided to not recode the effect sizes. Since the authors do not reference what
kind of software or estimator they use to estimate the random-effects model, we
took the standard DerSimonian-Laird estimator in the metafor package in R,
which is often used as the standard estimator in software.

The meta-analysis uses effect size r.

r = ±
√

t2

t2 + n− 2
, Cooper et al., 2009, p.233

φ =

√
χ2(1)

N
,Cohen, 1988, f.7.2.5

raggregated =

∑
rxy√

n+ n(n− 1)r̄xy

where n is the number of correlations to aggregate and

r̄xy is the intercorrelation, Hunter and Schmidt, 2004, p.435

ry1 = β1 + r12(ry2 − β1r12), Peterson and Brown, 2005, p.177
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MA13: Fischer et al. (2011)

p.523 The effect size g recommended by Hedges and Becker (1986) was used in
the statistical analysis. All effect sizes were computed via the statistics program
Comprehensive Meta-Analysis, Version 2.2.048 (Borenstein, Hedges, Higgins, &
Rothstein, 2005). We used a fixed effect model to assess the heterogeneity in
different subsets of studies. Fixed effect models are sensitive to the number of
participants within each study, so that studies with low sample size but extreme
effects have less impact on the results of the meta-analysis. This was important
to us to ensure that the test of our hypothesis that dangerous emergencies
reduce the bystander effect is not biased by single studies with extreme effect
sizes. Because fixed effect models assume a common true effect that underlies
all studies, we also performed random-effects analyses to examine the critical
variable of level of danger (high vs. low). Overall, it turned out that use of
fixed or random effects models did not qualify the main findings.

If means and standard deviations were reported in the research studies, we
computed the index g by subtracting the mean for the control group (no by-
stander present) from the mean for the experimental group (bystander present
group) and divided the difference by the pooled within-group standard devi-
ation. Hence, a negative sign indicated an inhibitory effect of bystanders on
helping behavior. When no means and standard deviations were reported, we
estimated g from t, F, or p values following the procedures recommended by
Hedges and Becker (1986). If there was more than one measure of helping, we
computed means as a composite measure.

We used a fixed effect model to assess the heterogeneity in different subsets of
studies. Because fixed effect models assume a common true effect that underlies
all studies, we also performed random-effects analyses to examine the critical
variable of level of danger (high vs. low). Overall, it turned out that use of
fixed or random effects models did not qualify the main findings.

p.522 We expected that dangerous emergencies would be associated with in-
creased levels of emergency awareness (triggered by increased perceived costs of
intervention), increased perceived costs of non-intervention, as well as increased
expected physical support by other bystanders, which should altogether then
reduce the bystander effect.

Note: we were unable to locate the Hedges and Becker text, and used formulas
from the Comprehensive Meta-Analysis program. We found effects for which no
transformation formulas were available- in those cases, other standard formulas
from Cooper and Hedges (1994) were used to reproduce the effect sizes. We
reversed the effect sizes for this meta-analysis, so positive effect sizes indicate
bystanders reduce helping responses, as is hypothesized by the authors. The
authors estimated both fixed effect as random-effects models, so we also estimated
both. For the random-effects analysis, we used the DerSimonian and Laird (DL)
estimation method in the metafor package in R, since this method is the standard
estimation method in Comprehensive Meta-Analysis.

The meta-analysis uses effect size g.
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d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Borenstein et al., 2009, f.4.18

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Borenstein et al., 2009, f.4.19

J = 1− 3

4df − 1

where df for two independent groups is n1+n2-2, Borenstein et al., 2009, f.4.22

g = J × d, Borenstein et al., 2009, f.4.23

OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

r =
Z√
N

, Rosenthal and DiMatteo, 2001, p.72

r =
d√

d2 + a
, Cooper et al., 2009, p.234

a =
(n1 + n2)2

n1n2
, Cooper et al., 2009, p.234

MA14: Fox et al. (2011)

p.323 Studies were included only if they provided information that allowed ef-
fect sizes to be calculated. This includes (Rosenthal, 1994) descriptive statistics
(means and standard deviations), F or t ratios, p values, and other nonpara-
metric test statistics such as chisquare.

p.328 Effect sizes were converted to rs, as recommended by Rosenthal
(1994). These values were adjusted for unequal sample sizes to correct for
sampling error, on the basis of Hunter and Schmidt (2004), and were Fisher
Z-transformed for analyses. The effect sizes were converted back to report re-
sults. Effect sizes reflecting higher performance in verbal report conditions were
assigned positive values, and effect sizes reflecting lower performance were as-
signed negative values.

All studies were weighted by sample size using the Zr formula wi = ni – 3.
p.329 A mixed effects approach consisting of both fixed and random effects

was used for analyses (Lipsey & Wilson, 2001).
Random effects were essential in this case because the sample includes a va-

riety of tasks, and the purpose of the analysis is to provide generalizable insights
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about reactivity of verbalization. Mixed effects allow moderator analyses to be
conducted on heterogeneous samples (Lipsey & Wilson, 2001).

The entire data set was initially analyzed with fixed effects to obtain a het-
erogeneity estimate (Q). An additional calculation of I 2 provides a standardized
indicator of heterogeneity by taking k into account (Higgins, Thompson, Deeks,
& Altman, 2003). Rejection of homogeneity means that moderator analysis is
warranted because there is too much between-studies variance to be accounted
for by chance alone (Hedges & Olkin, 1985). Moderator analyses were con-
ducted with Lipsey and Wilson’s (2001) mixed effects analogues to the analysis
of variance (ANOVA) and regression (meta-ANOVA and metaregression), using
iterative maximum likelihood for parameter estimation.

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) and
other references were used to reproduce the effect sizes. The authors present
the estimate of a random-effects model in Table 2 (see note a below the table).
As such, we tried to reproduce the meta-analytic effect using a random-effects
model. The authors do not explicitly state a hypothesized direction of the effect.
However, they base their research on the think-aloud effect on performance on
the Ericsson and Simon (1980, 1984) model in which is argued that thinking
aloud should not alter or disrupt the processes that mediate task performance.
In other words, verbalization should not worsen performance. The goal of this
meta-analytic study is to provide insight in which types of verbalization pro-
cedures are minimally reactive. Following this reasoning, either a null effect,
or a positive effect for thinking aloud is expected, since a negative effect (i.e.,
being silent is better for performance) is not expected. We did not reverse the
primary study effects. For the random-effects analysis, we used the Maximum
Likelihood estimation method in the metafor package in R, since the authors use
this method to estimate additional moderator effects in a mixed effects model.

The meta-analysis uses effect size r.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Cooper et al., 2009, p.226

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Cooper et al., 2009, p.226

r =
d√

d2 + a
, Cooper et al., 2009, p.234

a =
(n1 + n2)2

n1n2
, Cooper et al., 2009, p.234

d = ±

√
F (n1 + n2)

n1n2
, Cooper et al., 2009, p.228
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OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

rpb = 1− 2U

nenc
, DeCoster, 2009, f.5.15, p.18

rb =
rpb
√
nenc

|z ∗ |(nenc)
where z* is the point on the normal distribution with a p-value of:

ne
ne + nc

, DeCoster, 2009, f.5.10, p.17

r =
Z√
N

, Rosenthal and DiMatteo, 2001, p.72

rc =
ar√

[(a2 − 1)r2 + 1]
, Hunter and Schmidt, 2004, f.7.17, p.280

a =

√
.25

pq
, Hunter and Schmidt, 2004, f.7.17, p.280

where p and q are the proportions of the complete sample for the control and treatment

group, respectively; Hunter and Schmidt, 2004, f.7.18

Zr =
1

2
log

(1 + r)

(1− r)
, Cooper et al., 2009, p.231

r = tanh(Zr)

MA15: Freund & Kasten (2012)

p.303 Since the included studies investigated the relationship between self-
estimated and psychometrically assessed cognitive ability, most results were
directly reported as correlation coefficients.

p.304 It is usually recommended to use the Fisher’s z -transformed corre-
lation coefficients in meta-analysis because their distribution is more normal
than that of the Pearson correlation coefficients (Borenstein et al., 2009; Silver
& Dunlap, 1987) and because the variance of the estimates of the correlation
coefficients is not independent of the population parameter, ρ. Figure 1 shows
that the 154 correlation coefficients appear to be relatively normally distributed.
Using the nontransformed correlation coefficients offers the advantage that the
results of subsequent moderator analyses can be directly interpreted in the orig-
inal metric. We therefore decided to perform all analyses on the correlation
coefficients. However, in order to check for the robustness of this decision, we
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also report the meta-analytically derived result for the overall relationship based
on the Fisher’s z -transformed coefficients.

p.300 Most studies investigating the relationship between self-estimates of
cognitive ability and psychometric test scores report significant, positive cor-
relations. In 1982, Mabe and West reported an average effect size of r = .34
(out of 12 effect sizes). We therefore expect to find a significant, positive overall
relationship between the two variables.

p.308 We conducted a random-effects meta-analysis where most studies in
our data set report more than one effect size. In such cases, the main experi-
mental settings are usually the same or at least very similar. In order to cope
with any dependencies among these effect sizes, we used the hierarchical linear
modeling (HLM) approach to meta-analysis (Raudenbush & Bryk, 2002).

Technically, the unconditional, or ‘empty’, model is a random-effects model,
while the conditional model is a mixed-effects model because it includes fixed
effects for the moderator variables in addition to the random components.

All analyses were conducted with the software HLM 6.08 (Raudenbush,
Bryk, Cheong, & Congdon, 2009).

Note: we used no specific formulas for this meta-analysis, since only sin-
gle correlations were extracted. We are trying to reproduce the average effect
size from the unconditional multilevel model, which the authors specify as a
random-effects model. As such, we used a function to fit meta-analytic mul-
tivariate/multilevel models without any moderators or specifications. We used
the REML estimator in the metafor package in R, since REML is the default
estimation method in HLM. The authors also present results when transformed
to Fisher’s z, which we did not try to reproduce, since their primary outcome
seems to be estimates in correlation r.

The meta-analysis uses effect size r.

MA16: Green & Rosenfeld (2011)

p.97 The two types of effect sizes calculated were standardized mean differ-
ences between groups (Cohen’s d) and classification accuracy (sensitivity and
specificity). For consistency, Cohen’s d for each study was calculated based on
the available raw data (rather than the effect sizes reported in the studies).For
studies that permitted multiple comparisons by including more than one con-
trol group and/or feigning group, the sample size for each duplicated group was
divided in half before composite effect sizes were calculated to ensure accurate
weighting of each study. Study effect sizes were expected to differ significantly
by design and sample types. Therefore, composite effect sizes were calculated
with random-effects models.

Data were analyzed with the Comprehensive Meta-Analysis (Version 2) pro-
gram from Biostat.

Note: the authors do not reference any formulas they have used. As such,
we used formulas from the Comprehensive Meta-Analysis program. The authors
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do not explicitly state a hypothesized direction of the effect. However, since
the comparison is made between controls and (simulated) malingeres on SIRS
total score, which is expected to detect malingering, we assume the effect size
is expected to be positive. We did not reverse the effect sizes. For the random-
effects analysis we used the DerSimonian and Laird (DL) estimation method in
the metafor package in R, since this method is the standard estimation method
in Comprehensive Meta-Analysis.

The meta-analysis uses effect size d.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Borenstein et al., 2009, f.4.18

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Borenstein et al., 2009, f.4.19

MA17: Hallion & Ruscio (2011)

p.944 Effect sizes were determined using group means and standard deviations;
t, F, or chi-square values from between-group analyses; precise p values and
degrees of freedom from between-group analyses; or other effect size values (e.g.,
correlation coefficients) reported in the text (Borenstein, Hedges, Higgins, &
Rothstein, 2005; Lipsey & Wilson, 2001).

p.947 All effect sizes were coded such that a positive effect size reflected lower
anxiety and depression in the treatment group relative to the control group.

Weighted mean effect sizes, heterogeneity analyses, and moderator analyses
were conducted using Comprehensive Meta-Analysis, Version 2.2.046 (Boren-
stein et al., 2005).

p.949 All analyses presented were conducted using a random effects model.

Note: the authors do not explicitly state a hypothesized direction of the ef-
fect. However, in their literature review and general text the authors evaluate
other studies as CBM having a positive (i.e., reducing) effect on anxiety and
depression. As such, we did not reverse the effect sizes. For the random-effects
analysis we used the DerSimonian and Laird (DL) estimation method in the
metafor package in R, since this method is the standard estimation method in
Comprehensive Meta-Analysis.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Hallion and Ruscio, 2011, p.947

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Hallion and Ruscio, 2011, p.947

J = 1− 3

4(n− 1)
, Hallion and Ruscio, 2011, p.947
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Note: the authors do not define n. We interpreted it as total sample size.

g = J × d, Hallion and Ruscio, 2011, p.947

MA18: Ihle et al. (2012)

p.269 Effect sizes were calculated using Hedges’ g (i.e., the difference in mean
cognitive performance scores between the APOE e4 and the non-e4 groups di-
vided by the pooled standard deviation), which was then transformed to the
unbiased estimate Hedges’ d, because the former measure overestimates effect
sizes, particularly in small samples (DeCoster, 2004; Rustenbach, 2003).

If these data were not reported, Hedges’ g was computed from either t statis-
tics, F statistics with one degree of freedom in the numerator, chi-square statis-
tics, or dichotomous dependent variables (cf. DeCoster, 2004).

Overall cognitive performance analysis: Here, individual effect sizes (Hedges’
d) were pooled to derive the weighted average effect size d• across all studies as
an estimation of the APOE e4-related population effect size (Hedges & Olkin,
1985; Rustenbach, 2003).

Thus, for studies that reported multiple measures to assess cognitive perfor-
mance for the same samples, all of the dependent effect size estimates, Hedges’
g, were averaged and transformed into Hedges’ d to derive a single effect size
for each study.

We argue that the aforementioned features may be important and not reflect
simply noise error as it would be treated in fixed effects modeling. For this
reasons, random effects models were used in the present study.

p.270 Positive values of d indicate better performance of APOE e4 carriers,
whereas negative values indicate better performance of non-e4 carriers.

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) were
used to reproduce the effect sizes. The authors use a different formulation of
effect sizes: they first calculated Hedges’ g (which we name Cohen’s d), then
correct for small sample bias and end up with an estimate of Hedges’ d (which
we name Hedges’ g). The authors do not explicitly state a hypothesized direction
of the effect. However, in their literature review the authors indicate that the
support of a null or positive effect is considerably larger than a negative effect.
As such, we did not reverse the effect sizes. We used the Hedges estimator in
the metafor package in R, which is referenced in Hedges and Olkin (1985).

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, DeCoster, 2009, f.6.5, p.21

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, DeCoster, 2009, f.6.6, p.21
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J = 1− 3

4m− 1
, where m = ne + nt - 2, DeCoster, 2009, f.6.7, p.21

g = J × d, DeCoster, 2009, p.21

OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

MA19: Koenig et al. (2011)

p.624 Effect sizes were calculated with a hand calculator or DSTAT software
and then entered into Comprehensive Meta-Analysis (Version 2.2.050) and Sta-
tistical Package for the Social Sciences (SPSS).

In the agency–communion paradigm, researchers reported means and stan-
dard deviations separately on the agentic and communal scales, allowing the
computation of a d effect size comparing the ratings on the two scales: (M1 -
M2)/sp. The effect sizes were converted to g with the correction for small sample
bias: 1- [3/(4N × 9)] (Borenstein et al., 2009). Some authors split their sample
at the median on both scales and reported the frequencies or percentages in each
quadrant of the resulting 2x2 table. If only this report was available, agency and
communion were treated as dichotomous, and g was estimated from dCox, which
is a logistic transformation of the odds-ratio (Sanchez-Meca, Marın-Martınez,
& Chancon-Moscoso, 2003, Formula 18).

p.630 The within-study weighting term was the conventional inverse variance
for standardized comparisons of means (Lipsey & Wilson, 2001, p. 72) or dCox
(Sanchez-Meca, Marin-Martinez, and Chacon-Moscoso, 2003, Formula 19), with
the random-effects models also incorporating the between-studies variances in
the study weight.

p.635 Consistent with the rarity of women in top positions, higher status
leadership positions were expected to have a more masculine stereotype.

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) were
used to reproduce the effect sizes. We used the DerSimonian and Laird estimator
in the metafor package in R, which coincides with what is referenced in Lipsey
and Wilson (2001).

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Borenstein et al., 2009, f.4.18

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Borenstein et al., 2009, f.4.19
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J = 1− 3

4df − 1

where df for two independent groups is n1+n2-2, Borenstein et al., 2009, f.4.22

g = J × d, Borenstein et al., 2009, f.4.23

d = t

√
nt + nc
ntnc

, Cooper et al., 2009, p.228

OR =
AD

BC
, Borenstein et al., 2009, f.5.8

d =
log(OR)

1.65
, Sanchez-Meca et al., 2003, f.18, p.23

MA20: Kolden et al. (2011)

p.68 The effect size (ES) we used was r, the correlation coefficient for the re-
lation between congruence and outcome. Each study was reviewed and coded
by two raters (coauthors Wang and Austin). Discrepancies in original coding
were negotiated in a consensus discussion involving the first author. If r was
not available or nonsignificant (and not reported), we adopted the strategy of
entering zero as the effect size (Lipsey & Wilson, 2001). For studies reporting
multiple correlations and using multiple measures, we aggregated within each
study by accounting for the dependencies of measures. The within study aggre-
gation used the correlation matrix among measures if reported. Otherwise, we
assumed that the correlation among measures was .50 when the same method
was used (e.g., self-report congruence and self-report outcome) and a correla-
tion of .25 when different methods were used (e.g., self-report vs. observation;
Gleser & Olkin, 1994). The overall correlation was estimated by aggregating
the correlation of each study using a weighted average where the weights were
the inverse of variance of the estimates of the study level correlations (Hedges
& Olkin, 1985).

We adopted a random effects model for determining overall effect size (ES)
since the studies we identified were quite heterogeneous (Q=35.32, p < .01),
thus violating the assumptions required for fixed effects ES modeling (e.g., ho-
mogeneity of sample, variation in study ES due only to sampling error; Hedges
& Vevea, 1998).

Note: the Gleser & Olkin method for aggregation is used in the MAd package
in R, and refers to standardized mean differences. We transformed the effects
we wanted to aggregate to cohen’s d first for aggregation, and backtransformed
the aggregated effect size to r. The authors do not explicitly state a hypothe-
sized direction of the effect, but since positive regard for the patient (congru-
ence/genuineness) is generally seen as positive, it makes sense that the authors
expect a positive relationship between congruence and improvement. We did not
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reverse the effect sizes. We used the Hedges estimator in the metafor package
in R, which is referenced in Hedges and Olkin (1985).

The meta-analysis uses effect size r.

d = Xδ + ε, Gleser & Olkin (1994), f.3.5

MA21: Lucassen et al. (2011)

p.988 The Comprehensive Meta-Analysis (CMA) program was used to trans-
form the results of the individual studies into the common metric of Pearson’s
product-moment correlation coefficients (r) and to combine weighted effect sizes
(Borenstein et al., 2009).

Significance tests were performed through random effects models (Borenstein
et al., 2009).

p.987 We expect that higher levels of paternal sensitive warmth, and in
particular when co-occurring with sensitive stimulation, are associated with
more infant–father attachment security.

Note: For the random-effects analysis we used the DerSimonian and Laird
(DL) estimation method in the metafor package in R, since this method is the
standard estimation method in Comprehensive Meta-Analysis.

The meta-analysis uses effect size r.

ry1 = β1 + r12(ry2 − β1r12), Peterson and Brown, 2005, p.177

MA22: Mol & Bus (2011)

p.273 All correlations between a print exposure checklist and any outcome vari-
able were inserted into the computer program Comprehensive Meta-Analysis
(Borenstein, Hedges, Higgins, & Rothstein, 2005) and transformed into Fisher’s
z effect sizes for further analyses, because the variance of z is approximately
constant, whereas the variance of the correlation follows an asymmetrical distri-
bution (Borenstein, Hedges, Higgins, & Rothstein, 2009). To ease interpretation
of the Results section, Fisher’s z summary estimates were transformed back into
a correlation with the formula r= tanh(z ) (Lipsey & Wilson, 2001).

For studies that did not report bivariate Pearson rs, we converted the pro-
vided statistics into Fisher’s z values. A p value of .10 was entered and converted
into a weighted correlation for studies that only reported that an association
was not significant. Kalia (2007), however, reported the range of nonsignificant
correlations, so we entered p = .50 for all nonsignificant values to estimate a
conservative correlation in the lower end of that range. Studies in which partial
correlations (k=11), converted F and t tests (k=4), or means and standard
deviations (k=8) were provided were scattered through all outcome measures
and did not influence the results when we analyzed the data without them.
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When a study used multiple tests to measure one outcome domain, we av-
eraged the effect sizes within that study to ensure that each study contributed
only one effect size to the analysis of that domain so that each had an equal
impact on the summary estimate of each domain.

For oral language, reading comprehension, and spelling skills, our stepwise
approach included (a) aggregating effects of standardized and unstandardized
tests into two separate composites and (b) if both were available, combining the
standardized and unstandardized composites to create an overall composite per
study.

p.272 Hypothesis 1: At all educational levels, indicators of the comprehen-
sion component (oral language, reading comprehension, or general achievement
measures) as well as indicators of technical reading and spelling skills (basic
reading skills, word recognition, or spelling) will be associated with print expo-
sure.

Hypothesis 2: For unconstrained skills such as oral language and read-
ing comprehension, correlations with print exposure are expected to become
stronger with increasing grade levels, because readers who have pleasurable
reading experiences choose to read more often.

p.276 To estimate the mean effect size, we applied the conservative random-
effects model in which studies are weighted by the inverse of their variance, and,
in addition, within-study error and between-study variation in true effects are
accounted for (Borenstein et al., 2009).

Note: For the random-effects analysis we used the DerSimonian and Laird
(DL) estimation method in the metafor package in R, since this method is the
standard estimation method in Comprehensive Meta-Analysis. The authors state
they transformed the Fisher’s z estimated back to a correlation, but the estimate
we want to reproduce is z = .27. As such, we decided not to transform back the
estimates.

The meta-analysis uses effect size z.

z = 0.5× log(
1 + r

1− r
), Borenstein et al., 2009, f.6.2

MA23: Morgan et al. (2011)

p.41 Most studies (k=23) used some type of pre-post design, some of which
utilized a control group and some of which did not. For studies that did not
utilize a control group, effect size (ES) was calculated as the standardized mean
gain score (Becker, 1988; see Lipsey & Wilson, 2001), which is interpretable
as a standardized mean difference similar to Cohen’s d, where values around
0.2 are considered “small,” 0.5 are “medium,” and 0.8 or above are “large”
(Cohen, 1988, pp. 25–26). All ESs were coded so that a positive value indicated
improvement due to treatment. For prepost studies that included a control
group, ESs were calculated using the mean gain score from the treatment group
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only, so that these ESs could be directly comparable to those from studies
without a control group.

If a given study had multiple ESs for a general outcome (e.g., an ES for de-
pression and an ES for obsessive compulsive disorder under the general outcome
“mental health”), then these ESs were averaged to create an overall ES for that
study. However, if there was a separate ES for a subset of participants, then
only the ES for the complete group of participants was used (e.g., Lovell, Allen,
Johnson, & Jemelka, 2001 psychotic sample; Nelson et al., 2001).

For each outcome, we calculated a weighted mean ES, where each weight is
the inverse of the estimated variance of the ES (see Lipsey & Wilson, 2001, pp.
113–114). Each ES variance was calculated as the sum of the variance due to
sampling error and a random-effects variance component.

Because of the widely varying methodologies employed by the studies re-
viewed in this article, a random-effects analysis is clearly appropriate. In ad-
dition, we calculated a 95% confidence interval estimate of the mean effect
for each outcome (see Lipsey & Wilson, 2001, pp. 113–114). These analyses
were conducted using a computer macro by Wilson (2005), which utilizes the
method-of-moments approach to estimating the random-effects variance com-
ponent (Raudenbush, 1994).

p.39 Given findings from treatments with non-mentally disordered offenders
and psychosocial rehabilitation services for PMI, it was hypothesized that ser-
vices would be effective for the domain treated (i.e., correctional rehabilitation
oriented services would be effective for reducing criminalness), whereas psy-
chosocial rehabilitation oriented services would be effective at reducing symp-
toms of mental illness.

Note: We used the DerSimonian and Laird estimator in the metafor package
in R, since this is a method of moments based approach and it uses the inverse
of the variance of the effect size as weights, which coincides with the Lipsey and
Wilson (2001) reference.

The meta-analysis uses effect size d.

d =
x̄2post − x̄2pre

Sg√
2(1−r)

, Lipsey and Wilson, 2000, p.44

where Sg is the standard deviation of the gain scores, and r is the correlation between

pre- and posttreatment scores. Lipsey and Wilson, 2000, p.44.

Sg =
√
σ2
1 + σ2

2 − 2rσ1σ2, Borenstein et al., 2009, f.4.15

OR =
AD

BC
, Cooper et al., 2009, p.266

d = log(OR)×
√

3

π
, Cooper et al., 2009, p.232

26



MA24: Munder et al. (2012)

p.633 The relative effect size d with small sample correction and the correspond-
ing standard error were calculated for each TFT comparison (Lipsey & Wilson,
2001). One effect size was calculated per treatment comparison. PTSD symp-
toms were defined as the outcome of interest. If more than one measure was
used to assess PTSD symptoms, we selected one measure using a prespecified
hierarchy of measures.

We assumed that relative effects were drawn from a population of effects,
and therefore a standard inverse-variance-weighted random effect meta-analyses
using a method of moments estimator (DerSimonian & Laird, 1986) was con-
ducted within Stata 11.1 (StataCorp, College Station, TX).

p.632 In this study, true efficacy differences were eliminated by focusing on
a set of treatments that are equally effective. Trauma-focused therapies (TFT)
for posttraumatic stress disorder (PTSD) are such a set in that there appears
to be consensus that such treatments have been rigorously shown to be equally
effective (Bisson & Andrew, 2008; Bradley, Greene, Russ, Dutra, & Westen,
2005; Ehlers et al., 2010; van Etten & Taylor, 1998).

Note: since the authors assume the two TFT treatments are equally effec-
tive, we did not reverse the effect sizes. We used the DerSimonian and Laird
estimator in the metafor package in R.

The meta-analysis uses effect size g.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Lipsey and Wilson, 2000, p.48

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Lipsey and Wilson, 2000, p.47

J = 1− 3

4N − 9
, Lipsey and Wilson, 2000, p.49

g = J × d, Lipsey and Wilson, 2000, p.49

MA25: Piet et al. (2012)

p.1009 Computed ES statistics were standardized weighted mean differences
based on Hedges’s g for continuous measures of anxiety, depression, and mind-
fulness. ESs were weighted by the inverse standard error (i.e., taking the pre-
cision of each study into account) and presented with 95% confidence intervals
(CIs). Hedges’s g is a variation of Cohen’s d (Cohen, 1988), correcting for
potential bias due to small sample sizes (Hedges & Olkin, 1985).

ESs derived from RCTs were based on mean pre- to posttreatment change
scores (using the standard deviation of posttreatment scores) for both MBT and
control conditions.
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Our objective was by means of meta-analysis of the currently available re-
sults to test the hypothesis that MBT is an effective treatment for reduction of
symptoms of anxiety and depression in adult cancer patients and survivors.

p.1010 To obtain a summary statistic, ESs were pooled across studies using
the inverse variance random-effects model (DerSimonian & Laird, 1986).

Note: we used the DerSimonian and Laird estimator in the metafor package
in R.

The meta-analysis uses effect size g.

d =
∆1 −∆2

s

where ∆1 1 and ∆2 are the mean pre–post change scores for the treatment group and

control condition, respectively. Piet, Würtzen, and Zachariae, 2012, p.1010, footnote 2.

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Piet et al., 2012, p.1010, footnote 2.

s1 and s2 are the standard deviations of the posttreatment scores for each group.

J = 1− 3

4df − 1

where df for two independent groups is n1+n2-2, Piet et al., 2012, p.1010, footnote 2.

g = J × d, Piet et al., 2012, p.1010, footnote 2.

MA26: Smith & Silva (2011)

p.45 The studies included in this meta-analysis frequently (90%) reported data
in terms of bivariate correlations (Pearson’s r). Reports including other statis-
tics (e.g., analyses of variance, t tests, p values) were transformed to the metric
of r with statistical software. Coders assigned a positive value to effect sizes
indicating a stronger ethnic identity co-occurring with greater well-being (or
weaker ethnic identity co-occurring with, e.g., symptoms of mental il ess, dis-
tress), with a negative value indicating an inverse association between ethnic
identity and personal well-being. In two cases when an analysis was reported
to be statistically significant but no statistic was provided, the r value was de-
termined by the corresponding alpha level (assuming two-tailed α = .05 unless
reported otherwise). In six cases, analyses described as nonsignificant without
any additional information were set to r = .00.

To overcome this issue, we averaged all effect sizes within each study (weighted
by the number of participants included in each analysis) to compute an aggre-
gate effect size for that particular study (Mullen, 1989). Thus, each study
contributed only one data point to the calculation of the omnibus effect size.
However, in one instance where a grouping variable that was found to moderate

28



the omnibus results required subsequent detailed exploration for better inter-
pretation of the finding (the type of dependent measure used within studies),
we conducted an additional analysis by shifting the unit of analysis (Cooper,
1998). In that analysis, we included multiple effect sizes within studies if they
were based on distinct measures of wellbeing (i.e., self-esteem and symptoms
of depression). Thus, this approach disaggregated results across conceptually
distinct measures used within studies.

Because factors other than ethnic identity influence well-being and because
the magnitude of the association between ethnic identity and well-being was
expected to differ across individual participants and across individual studies,
random effects models were used in analyzing the data with macros for SPSS
provided by Lipsey and Wilson (2001).

Note: since the authors do not use any references to formulas used to trans-
form effect sizes, we used standard formulas from Cooper and Hedges (1994).
The authors do not explicitly state a hypothesized direction of the effect, but
it is clear from the text that they expect to find a positive correlation (e.g.,
”Scholars have consistently concluded that a strong ethnic identity is positively
associated with personal well-being and successful life adjustment for people of
color (p.44)”. We did not recode the effect sizes. The SPSS macro from Lipsey
and Wilson (2001) estimates inverse variance weights and uses, among others,
a noniterative method of moments estimator. This coincides with the DerSi-
monian and Laird estimator in the metafor package in R, which we used for
estmation.

The meta-analysis uses effect size r.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Cooper et al., 2009, p.226

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Cooper et al., 2009, p.226

r =
d√

d2 + a
, Cooper et al., 2009, p.234

a =
(n1 + n2)2

n1n2
, Cooper et al., 2009, p.234

MA27: Tillman (2011)

p.1015 Pearson correlation coefficients for the relation between simple and com-
plex span tasks derived from each study, and the mean age of each sample, were
used as the relevant primary data in the present meta-analysis.

Weighted regression analysis with method of moments random effects, adapted
for meta-analytic purposes by Lipsey and Wilson (2001), was used in the meta-
analysis. The meta-analytic computations were done with SPSS, using syntaxes
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provided by Lipsey and Wilson. To study the effects of age on the relation
between simple and complex span tasks, the simple span–complex span corre-
lation coefficients were used as outcome, mean age of sample as predictor, and
the inverse variance (calculated as n – 3; see Lipsey & Wilson, 2001) as weight
variable.

About half of the included samples (n = 27) reported more than one corre-
lation coefficient of the simple span–complex span relation (because they used
several simple and/or complex span tasks; see note in Table 1). As recom-
mended by Hunter et al. (1986), the correlation coefficients in these cases were
averaged to yield a single effect size estimate for that sample.

Note: no specific formulas for this meta-analysis, since only single corre-
lations or the mean of multiple correlations were extracted or calculated. The
author does not explicitly state a hypothesized direction of the effect we are re-
searching, but it is clear from the text that they expect to find a positive correla-
tion (e.g., ”the developmental hypothesis concerning the relation between simple
and complex spans is that these immediate memory tasks are more strongly re-
lated in children than in adults. (p.1013)”. We did not recode the effect sizes.
The SPSS macro from Lipsey and Wilson (2001) estimates inverse variance
weights and uses, among others, a noniterative method of moments estimator.
This coincides with the DerSimonian and Laird estimator in the metafor package
in R, which we used for estmation.

The meta-analysis uses effect size r.

MA28: Toosi et al. (2012)

p.11 We calculated effect sizes using the r statistic, as recommended by Rosen-
thal, 1991, through one of several methods. If the study reported an F value
with one degree of freedom in the numerator, a t value, a chi-square value with
one degree of freedom, or a Z value that directly compared the outcomes for
the same-race and interracial dyads, we were able to calculate the r value using
formulas provided in Rosenthal, 1991. Studies that reported a beta value were
included as well, using the approximation suggested by Peterson and Brown
(2005). Alternatively, if studies did not directly provide these statistics we of-
ten were able to obtain the means, standard deviations, and sample sizes so
that a two-sample t test comparing the same-race and interracial dyads could
be calculated (Rosenthal & Rosnow, 1991). When multiple values for the same
category of dependent measures could be calculated from a single participant
sample, the effect sizes were averaged into a single value, using an unweighted
Fisher’s Z-to-r transformation.

When results indicated the presence of bias in favor of same race partners
over other-race partners, the effect sizes were considered congruent with ex-
pectations of prejudice in interracial interactions and were assigned a positive
sign. When results showed a bias in favor of other-race partners over same-race
partners, the effect sizes were assigned a negative sign. When authors reported
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no significant differences between interracial and same-race dyads and sufficient
data could not be obtained to calculate an exact value or direction, those effect
sizes (k=19) were set equal to zero.

Random-effects models were used to calculate the overall effect sizes.
For random-effects models, study effect sizes are weighted by the inverse of

the variance and combined, incorporating an estimate of between-study vari-
ance. To calculate mean effect sizes, we used the Comprehensive Meta-Analysis
software package (Version 2; Borenstein, Hedges, Higgins, & Rothstein, 2005).

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) were
used to reproduce the effect sizes. When we found multiple values for the same
category of dependent measures, we averaged the effect sizes, since it is unclear
what the authors meant with an ”unweighted Fisher’s Z-to-r transformation”,
given the fact that we do not calculate Fisher’s z estimates. For the random-
effects analysis we used the DerSimonian and Laird (DL) estimation method in
the metafor package in R, since this method is the standard estimation method
in Comprehensive Meta-Analysis.

The meta-analysis uses effect size r.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Rosenthal, 1991, f.2.4

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Cooper et al., 2009, p.226

r =

√
t2

t2 + (n1 + n2 − 2)
, Rosenthal, 1991, f.2.16

r =

√ √
F√

F + (n1 + n2 − 2)
, Rosenthal, 1991, p.15:

If the test statistic employed was F (from analysis of variance) and df for the numerator

was unity, we take the as t and proceed as we did in the case of t with df equal to the

df of the denominator of the F ratio

r =
d√

d2 + a
, Rosenthal, 1991, f.2.19 & 2.20

a =
(n1 + n2)2

n1n2
, Rosenthal, 1991, f.2.19 & 2.20

MA29: van Iddekinge et al. (2011)

p.1173 We implemented Hunter and Schmidt’s (2004) psychometric approach
to meta-analysis. We began by identifying (and/or computing) the observed
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validity coefficient(s) within each primary study. Most studies reported zero-
order correlations. When other statistics were reported (e.g., t, M, and SD), we
converted them to correlations using formulae provided by Hunter and Schmidt.

For studies that reported a single validity coefficient between one interest
scale and one criterion measure, we used that coefficient in our analyses. For
studies that reported validities for multiple interest scales (e.g., scales for each
RIASEC dimension), we recorded the interest scale that was theoretically most
relevant to the target job or vocation. For most studies, it was clear which scale
was most relevant.

p.1169 To the extent training reflects the knowledge and skill requirements
of the job, employees whose interests are congruent with the job may be more
motivated to perform during training (and, in turn, acquire job-relevant knowl-
edge and skills) than people whose interests are not as congruent with the job.

Note we used: no specific formulas for this meta-analysis, since only single
correlations or the mean of multiple correlations were extracted or calculated.
The authors do not indicate whether they used a fixed effect or random-effects
model. We estimated both. For the random-effects meta-analysis, we used the
Hunter & Schmidt estimation method in the metafor package in R.

The meta-analysis uses effect size r.

MA30: Webb et al. (2012)

p.784 Two types of comparisons were deemed to provide useful information
about the effects of different ER strategies: (a) a comparison between par-
ticipants who were given regulation instructions (experimental condition) and
participants who were given alternative instructions (either another experimen-
tal condition or a control condition) or (b) a within-participants comparison
between trials where participants were given regulation instructions and trials
where participants were given alternative instructions. Where experiments in-
cluded manipulations of more than one ER strategy or more than one control
condition, we included all relevant comparisons. Where possible, we compared
each ER strategy with each control strategy. However, if no control strategy
was included, we compared the experimental strategies with each other.

Whenever multiple comparisons from one experiment led to the same par-
ticipants being represented in more than one effect size, we adjusted the N
for each group accordingly when calculating the standard error (i.e., if control
instructions were compared to both reappraisal instructions and suppression in-
structions, we computed effect sizes for both comparisons but halved the N for
the control group when calculating the standard error.

For example, if the effect was nonsignificant we assumed zero difference
(d=0.00). If the effect was significant at p < .05 we used the smallest value of
d (given the sample size) that was significant at this level of alpha (Lipsey &
Wilson, 2001).

Some ER instructions aimed at improving affect, whereas others were in-
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tended to worsen affect. Thus, we did not code our effect sizes in terms of
hedonic success (i.e., a decrease in negative affect or increase in positive affect).
Instead, we calculated effect sizes in terms of regulation success according to
the strategy’s aims. For example, if a strategy was intended to reduce anger,
the data were coded such that a positive effect size represented a reduction in
the experiential, physiological, or behavioral components of anger. If a strategy
was intended to increase anger, the data were coded such that a positive effect
size represented an increase in these components of anger.

p.785 Where outcomes were measured at multiple timepoints, we used data
from the ER period (e.g., physiological measures of experience during regula-
tion) or the nearest timepoint after the ER period (e.g., self-report measures
completed after the regulation attempt). Where there were multiple time points
within the ER period (e.g., Borton & Casey, 2006) or values were reported for
multiple ER periods (e.g., Hunt, 1998), an average effect size was computed
prior to inclusion in the main data set.

p.791 Computations were undertaken using STATA Version 11 and Com-
prehensive Meta-Analysis Version 2 (Borenstein, Hedges, Higgins, & Rothstein,
2005). Weighted average effect sizes (d+) were based on a random effects model
because studies were likely to be “different from one another in ways too complex
to capture by a few simple study characteristics” (Cooper, 1986, p. 526).

Note: since the authors do not use any references to formulas used to trans-
form effect sizes, we used standard formulas from Borenstein et al., 2009 and
Cooper and Hedges (1994). We used the DerSimonian and Laird (DL) esti-
mation method in the metafor package in R, since this method is the standard
estimation method in Comprehensive Meta-Analysis.

The meta-analysis uses effect size d.

d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Borenstein et al., 2009, f.4.18

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Borenstein et al., 2009, f.4.19

d = t

√
nt + nc
ntnc

, Cooper et al., 2009, p.228

MA31: Woodin (2011)

p.328 A separate effect size was computed for each observational code and for
each analysis (i.e., gender difference or relationship satisfaction). Effect sizes
were computed using Cohen’s (1988) d, which was then corrected for small
sample bias (Hedges & Olkin, 1985). Most of the data used to analyze gender
differences and relationship satisfaction were reported as means and standard
deviations. Cohen’s d was also computed in several cases based on the re-
ported test statistic (F ratio or t ratio) and was also at times transformed
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from a correlation coefficient (r). In several instances, means and standard
deviations were reported separately for different groups (e.g., male and female
behavior reported separately for high- vs. low-relationship satisfaction) or dif-
ferent conversations (e.g., male topic vs. female topic). In this case, means and
standard deviations were weighted for sample size and averaged across groups.
When differences were reported as nonsignificant, but inadequate information
was provided to calculate an effect size, the conservative approach of assigning
a d of zero was used (Lipsey & Wilson, 2001). Finally, several effect sizes were
significant outliers (greater than 2 SDs from the mean) compared to others in
the same category. In each case, the effect size was Windsorized by recoding
each outlier to be slightly larger than the next largest effect size in the category,
so that one large effect size did not skew the overall findings (Lipsey & Wilson,
2001).

A conservative decision rule was created to deal with combination codes
(e.g., more than one code combined into a summary code), such that coders
were instructed to choose the metacode that represented the highest intensity
behavior represented by the combination code. For instance, a combination
code that included belligerence, anger, and sadness would be coded as hostility
even if it contained some distress behavior.

p.329 Analyses began with fixed-effects models, as effect sizes were theorized
to vary systematically based on characteristics of individual studies (Lipsey &
Wilson, 2001). Overall effect sizes with significant heterogeneity were then
tested for study moderators.

p.327 On the basis of previous research and theory, the hypotheses were that
(a) women would engage in the higher intensity behaviors of hostility, distress,
and intimacy more than men; (b) men would engage in the more low-intensity
behaviors of withdrawal and problem solving more than women; (c) higher
intensity behaviors (hostility and intimacy) would be closely associated with
relationship satisfaction; and (d) lower intensity behaviors (distress, withdrawal,
problem solving) would be less closely related to relationship satisfaction.

Note: we found effects for which no transformation formulas were available-
in those cases, other standard formulas from Cooper and Hedges (1994) were
used to reproduce the effect sizes. The authors state they corrected their Co-
hen’s d estimates for small sample bias (i.e., they transformed them to Hedges’
g). However, since the final primary study effect size in the meta-analysis is a
correlation, we assumed they used the Hedges’ g effect size as input when trans-
forming to correlations. The author does not specifically state whether they ex-
pect a negative or positive correlation, but since hostility is regarded as negative
affect, we assume the author does expect a negative correlation between hostility
and marital adjustment. We reversed the effect sizes for this meta-analysis, so
positive effect sizes indicate a negative correlation between marital adjustment
and hostility, as we assume is expected by the author.

The meta-analysis uses effect size g.
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d =
x̄1 − x̄2

s
=
µ1 − µ2

s
, Hedges and Olkin, 1985, p.78

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, Hedges and Olkin, 1985, p.79

J = 1− 3

4N − 9
, Hedges and Olkin, 1985, p.81

g = J × d, Hedges and Olkin, 1985, p.81

d =
2r√

1− r2
, Borenstein et al., 2009, f.7.5

r =
√
η2, Levine and Hullett, 2002, p.615

MA32: Woodley (2011)

p.229 In this section the results of a meta-analysis involving all known correla-
tions between g and K (both published and unpublished) will also be presented
demonstrating the independence of these variables.

Note: the author does not indicate whether they used a fixed effect or ran-
dom effects model. We estimated both. Since we do not know what program
or estimation method were used, we used the standard DerSimonian-Laird es-
timator for the random-effects analysis in the metafor package in R. We used
no specific formulas for this meta-analysis, since only single correlations were
extracted. The author does not explicitly state a hypothesized direction of the ef-
fect. The author investigates the relationship between g (IQ) and K (life history
speed). They expect a correlation (”There is every indication therefore that g
and direct measures of life history speed should correlate at individual differences
scales”) but do not state the direction. One of the evolutionary theories they dis-
cuss is the life history differential K theory, which states that life history speed
negatively correlates with fitness indicators (g, IQ) because the environment be-
ing developed is less stable. The remainder of the article focuses on hypotheses
being related to mediators. Since we did not want to deviate from the origi-
nal meta-analysis if not needed, we decided to not reverse code the effect, so a
positive effect indicates a positive correlation between the two variables.

The meta-analysis uses effect size r.

MA33: Yoon et al. (2011)

p.90 The correlation coefficient (i.e.,r) was the effect size measure of choice. For
each meta-analysis, only one effect size was included from each study. For ex-
ample, when multiple relevant correlations were reported from the same sample
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(e.g., Wong, Tran, & Lai, 2009), the average of the correlations was coded as
the effect size. When the correlation was reported for each subgroup of the sam-
ple (e.g., Yeh, 2003), the correlation with the overall sample was coded as the
effect size. When the correlations for both acculturation/ enculturation total
scales and dimensions were reported, we chose the correlations with total scales
(e.g., Obasi & Leong, 2009). Four studies reported only standardized regression
weights without any information to calculate correlations (e.g., Cavazos-Rehg
& DeLucia-Waack, 2009; Rahman & Rollock, 2004; Rodriguez, Mira, Morris, &
Cardoza, 2003; Tsai et al., 2000). Following Hunter and Schmidt’s (2004) claim
that standardized regression weights could validly substitute for correlations in
meta-analyses, we used standardized regression weights for the four studies (see
Poropat, 2009). To avoid any problem associated with the standard error for-
mulation of correlation coefficients, we converted each effect size of r to zr by
using Fisher’s r -to-z transformation to calculate theQ statistic for homogeneity
test and the mean effect size.

We used random effects models because they make inferences about a pop-
ulation of studies beyond the present sample of studies by considering both
within-study and between-study variability.

Note: the author does not explicitly state a hypothesized direction of the ef-
fect. The authors investigate the relationship of acculturation/enculturation and
psychological distress/depression or self-esteem. Since acculturation is, among
others, defined as “cultural adaptation that occurs as a result of contact be-
tween multiple cultures”, and the authors state ”acculturation and enculturation
showed patterns of noninverse correlations with other variables (i.e., personality,
self-identity, and psychosocial adjustment” (p.84), we assume a negative corre-
lation between acculturation and distress/depression or self-esteem is expected.
We reversed the effect sizes for this meta-analysis, so positive effect sizes indi-
cate a negative correlation between acculturation and distress/depression, as we
assume is expected by the authors. Since we do not know what program or esti-
mation method were used and the authors reference Lipsey and Wilson (2001)
when discussing the random-effects analysis, we used the standard DerSimonian-
Laird estimator in the metafor package in R.

The meta-analysis uses effect size r.

ry1 = β1 + r12(ry2 − β1r12), Peterson and Brown, 2005, p.177

Zr =
1

2
log

(1 + r)

(1− r)
, Cooper et al., 2009, p.231

r = tanh(Zr)

General formulas

rpb =
d√

d2 + h
, Jacobs and Viechtbauer, 2016, f.5

36



h =
m

n1
+
m

n0
,m = n1 + n0 − 2, Jacobs and Viechtbauer, 2016, f.5

rb =

√
pq

f(zp)
rpb, Jacobs and Viechtbauer, 2016, f.8

where f(zp) denotes the density of the standard normal distribution at value zp,

which is the point for which P(Z > zp) = p, with Z denoting a random

variable following a standard normal distribution.

p =
n1
n
, q = 1− p, Jacobs and Viechtbauer, 2016, f.6

zrb =
a

2
log(

1 + arb
1− arb

), Jacobs and Viechtbauer, 2016, f.17

a =

√
f(zp)
4
√
pq

, Jacobs and Viechtbauer, 2016, f.17
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