
of the infection probability as a function of the vaccination coverage.

Proposition 1. [ [5]] Given any P P [0, 1], there exists a unique πP that is strictly decreasing

and concave in P until P reaches the elimination threshold Pcrit. Furthermore,

πP = 1´ 1
R0(1´P) for any P ă Pcrit, and πP = 0 for any P ě Pcrit.

We now proceed to analyzing the game.

Let σi P [0, 1] denote the probability that player i chooses vaccination. σ = (σ1, . . . , σn)

denotes a mixed-strategy profile. The expected payoff for player i from randomization

with σi can be expressed as follows:

EUi(σi, σ´i) =
u(R)

µ
´ σiC´ (1´ σi)dR0 LE[πP(σ)],

where E[πP(σ)] denotes the expected infection probability given the mixed-strategy

profile σ.

Definition 1. A strategy profile σ˚ = (σ˚1 , . . . , σ˚n ) P [0, 1]n is a totally mixed-strategy Nash

equilibrium for the game G if we have for any i P N

σi P (0, 1), (3)

and for all σ˚i P [0, 1],

EUi(σ
˚
i , σ˚´i) ě EUi(σi, σ˚´i). (4)

In what follows, we shall focus on the case in which C ď π0dR0 L. If C ą π0dR0 L, the

only equilibrium outcome is zero vaccination coverage.

Characterization of all Nash equilibria

The following proposition characterizes the set of pure-strategy equilibrium outcomes.

Proposition 2. For k = 0, 1, . . . , νcrit ´ 1, ν = k + 1 is the pure strategy equilibrium outcome

for C
dR0 L P (πk+1, πk].

Proof of Proposition 2. For any i P V(b), she has no incentive to deviate because

C ď dR0 Lπk; for any i R V(b), she has no incentive to deviate because C ą dR0 Lπk+1.

ν ă k + 1 cannot arise in pure strategy equilibrium because some i R V(b) can always

be better off by taking the vaccination. ν ą k + 1 cannot arise in pure strategy

equilibrium because some i P V(b) can always be better off by not taking the

vaccination. Lastly, note that ν ą νcrit cannot arise in equilibrium because the infection

probability vanishes.

S1 Appendix. Model and Predictions

We reproduce the result on πP from [5] below and we want to highlight the concavity



We now show a general characterization of all mixed-strategy equilibria. Let M be the

set of players using mixed strategies, and |M| = m. The next proposition characterizes

all the mixed-strategy equilibria for m ą 1,

Proposition 3. Given n ą R0, for m ą 1 and ν ď mintνcrit ´ 1, n´mu, xν, my arises as a

mixed strategy equilibrium outcome for C
dR0 L P (πν+m´1, πν) with σ = σ˚ and is uniquely

determined by
C

dR0 L
=

m´1
ÿ

k=0

πν+k

(
m´ 1

k

)
σ˚

k(1´ σ˚)m´1´k. (5)

Proof of Proposition 3. A mixed-strategy Nash equilibrium requires that every player

in M is indifferent between vaccination and non-vaccination, i.e.,

EUi(vc, σ˚´i) = EUi(nv, σ˚´i) for any i PM. (6)

It follows that

1
µ

u(R)´ C =
1
µ

u(S)´ dR0 LE[πP(σ)].

where E[πP(σ)] denote the expected infection probability given ν = k. Note that the

additional vaccination arising from mixed-strategy follows the Poisson binomial

distribution with success probabilities σ´i, we obtain

C
dR0 L

=
m´1
ÿ

k=0

πν+k
ÿ

VPP(M´i ;k)

ź

jPV

σj
ź

lPM´i/V

(1´ σl) (7)

for any i PM. Consider this system of equations (characterizing the indifference

conditions for the players in set M) where ν ď mintνcrit ´ 1, n´mu, we claim that for

any mixed strategy equilibria with m ą 1, the mixed-strategy profile σ is unique as

shown by the following two lemmas.

Lemma 1. There exists a solution to (7) for C
dR0 L P (πν+m´1, πν) s.t. σi = σ˚ for any i PM.

Proof of Lemma 1. The system (7) reduces to

C
dR0 L

=
m´1
ÿ

k=0

πν+k

(
m´ 1

k

)
σ˚

k(1´ σ˚)m´1´k. (8)

By intermediate value theorem, there exists σ˚ P (0, 1) such that the above equation

holds.

Lemma 2. (7) has at most one solution.

Proof of Lemma 2. Define vector-valued function H : [0, 1]n Ñ IRn where every



component function

Hi := dR0 rσi

m´1
ÿ

k=0

πν+k
ÿ

VPP(M´i ;k)

ź

jPV

σj
ź

lPM´i/V

(1´ σl).

It is easy to check that H is continuously differentiable on (0, 1)n. The system of

equations (7) is equivalent to σi = Hi(σ) for all i P N . Suppose there exists two

solutions σ˚ and σ1 such that }σ˚ ´ σ1} ą 0. By mean value inequality (Rudin, 1976),

we have

}σ˚ ´ σ1} = }H(σ˚)´ H(σ1)} ď }DH(ξ)} ¨ }σ˚ ´ σ1} (9)

where ξ P (0, 1)n and DH(ξ) is the Jacobian matrix evaluated at ξ. Since the row

vectors of DH(ξ) are linearly dependent, DH(ξ) is not invertible and thus

}DH(ξ)} = 0. It follows that }σ˚ ´ σ1} ď 0. The requires a contradiction.

Combining the two lemmas, we reach the conclusion that in any mixed strategy

equilibrium with m ą 1, mixing probabilities must be unique and identical across

players.

Now (5) implies the best response of any i PM. Any i P V(b) has no incentive to

deviate since her incentive constraint C ă dR0 LE[πk´1] can be simplified using (5) as

C
dR0 L

ă σm´1πν+m´2 + (1´ σ)m´1πν´1,

which holds under C
dR0 L P (πν+m´1, πν). Any i R V(b) has no incentive to deviate since

her incentive constraint C ą dR0 LE[πP(σ)] can be simplified using (5) as

C
dR0 L

ą σm´1πν+m + (1´ σ)m´1πν+1,

which again holds under C
dR0 L P (πν+m´1, πν). This completes the proof.

It follows from the general proposition that there exists a unique totally mixed strategy

equilibrium where m = n.

Corollary 1. There exists a unique totally mixed strategy equilibrium, where σ˚i = σ˚ and is

implicitly defined by

1
dR0 r

=
νcrit
ÿ

k=0

(
1´

1
R0
´

k
n

)(
n
k

)
σ˚

k(1´ σ˚)n´1´k. (10)



Equilibrium Vaccination Coverage

Let P˚(r, R0) denote the probability distribution over the vaccination coverage induced

in the mixed-strategy equilibrium. The following proposition shows that an increase in

the relative benefit r leads to an equilibrium distribution yielding an unambiguously

higher vaccination coverage.

Proposition 4. For any R0 ą 1, P˚(r, R0) first-order stochastically dominates (FOSD)

P˚(r1, R0) if and only if r ą r1.

Proof of Proposition 4. Let ν and ν1 be the equilibrium number of vaccinated people

given the relative benefit r and r1 respectively. For future use, denote Fν(x) as the CDF

of a random variable ν. We start by working directly with σ as shown in the following

lemma.

Lemma 3. ν FOSD ν1 if and only if σ ą σ1.

Proof of Lemma 3. ν FOSD ν1 if and only if Fν(x) ď Fν1(x) for any x P t1, . . . , nu. Since

both ν and ν1 follows binomial distribution with n trials, we remain to show dFν(x)
dσ ď 0.

Now consider for any x, the derivative

dFν(x)
dσ

=
x

ÿ

k=1

k
(

n
k

)
σk´1(1´ σ)n´k ´

x
ÿ

k=0

(n´ k)
(

n
k

)
σk(1´ σ)n´k´1

= n

(
x

ÿ

k=1

(
n´ 1
k´ 1

)
σk´1(1´ σ)n´k ´

x
ÿ

k=0

(
n´ 1

k

)
σk(1´ σ)n´k´1

)
= n (Fν̃(x´ 1)´ Fν̃(x)) ď 0

where ν̃ „ Bin(n´ 1, σ).

It remains to show that σ˚ is monotonically increasing in r. By implicit function

theorem, taking partial derivative of the vaccine uptake likelihood σ˚(r, R0) with

respect to r gives us

Bσ˚

Br
= 1/

[
dR0 r2

vcrit
ÿ

k=0

((n´ 1)σ˚ ´ k)
(

1´
1

R0
´

k
n

)(
n
k

)
σ˚

k´1(1´ σ˚)n´2´k

]
,

which is positive for any r ą R0
(R0´1)dR0

.

Therefore, ν FOSD ν1 and equivalently, P(r, R0) FOSD P(r1, R0) if and only if r ą r1.

The stochastic dominance presented in Proposition 4 implies that Pr˚(P ě Pcrit), the

equilibrium probability for the society to achieve the vaccination coverage needed to

obtain herd immunity, is monotonically increasing in r and converges to 1 as r goes to

infinity. By nature of mixed-strategy equilibria, it is impossible to obtain

Pr˚(P ě Pcrit) = 1 and obliterate an epidemic. However, the society can still



approximate the complete immunity via voluntary vaccination. The following corollary

summarizes this discussion.

Corollary 2. Pr˚(P ě Pcrit)Ñ 1 as r Ñ8.

Proof of Corollary 2. By Proposition 4, Pr˚(P ě Pcrit) = 1´ Fν(νcrit) is monotonically

increasing in r. Furthermore, as r Ñ8, σ˚ Ñ 1, and Fν(νcrit)Ñ 0.

We now investigate the role of concavity of the long-run infection probability in

facilitating the elimination of an epidemic. Let P L(r, R0) be the equilibrium vaccination

coverage in the linearized environment with πL
P = 1´ 1

R0
´ P for any P ă Pcrit, and

πL
P = 0 for any P ě Pcrit. Then we have the following result.

Proposition 5. For any r ą R0
(R0´1)dR0

and R0 ą 1, P˚(r, R0) FOSD P L(r, R0).

Proof of Proposition 5. By Proposition 3, the totally mixed strategy equilibrium in the

linearized environment σL
i = σL is implicitly defined by

1
dR0 r

=
νcrit
ÿ

k=0

(
1´

1
R0
´

k
n

)(
n´ 1

k

)
σLk

(1´ σL)
n´1´k

. (11)

By Pascal’s rule, (n´1
k ) ď (n

k) for any k ă n and thus σL ď σ˚. By lemma 3, P˚(r, R0)

FOSD PL(r, R0).

We now address a comparative static question regarding R0. That is, are the players

more likely to reach immunity if they are faced with a more threatening epidemic? An

exogenous increase in the reproduction ratio R0 has two competing effects on how

easily the society can achieve herd immunity via voluntary vaccination. On the one

hand, it raises the long-run probability of infection πP, meaning that individuals in the

mixed-strategy Nash equilibrium are more likely to vaccinate. On the other hand, a

higher R0 also increases the critical level needed for herd immunity Pcrit. Figure 1

shows that the first effect dominates the second effect so that it is easier to achieve herd

immunity when R0 is higher. This result is summarized in the following proposition.

Proposition 6. For any r P ( R0
(R0´1)dR0

,+8), P˚(r, R0) FOSD P˚(r, R10) if and only if

R0 ą R10.
Proof of Proposition 6. By implicit function theorem, taking partial derivative of the

vaccine uptake likelihood σ˚(r, R0) with respect to R0 gives us

Bσ˚

BR0
=

řvcrit
k=0 R0

´2(n
k)σ

˚k(1´ σ˚)n´1´k +
˙dR0

d2
R0

r
řvcrit

k=0 ((n´ 1)σ˚ ´ k)
(

1´ 1
R0
´ k

n

)
(n

k)σ
˚k´1(1´ σ˚)n´2´k

, (12)

which is positive for r ą R0
(R0´1)dR0

. By lemma 3, P˚(r, R0) FOSD P˚(r, R10) if and only if

R0 ą R10.



This result implies that a more contagious disease is unambiguously easier to deal with.

A higher R0 encourages people to get vaccinated voluntarily. Hence, epidemics like

Ebola, with substantially low R0, are particularly difficult to control based on voluntary

vaccination.




