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5ICREA, Pg. Llúıs Companys 23, 08010 Barcelona, Spain

1 Supplementary Methods

SI Datasets The base data used in this project is collected from the work of Sanchez-Valle et
al. [7]. It consists of multiple datasets of gene expressions captured by micro-array technology
[9]. The datasets are downloaded from Gene Expression Omnibus (GEO, [1]) and ArrayExpress
[2] databases. Each dataset contains measurements from healthy (controls) and affected (patients)
subjects. For a given dataset, the measurements originate from bulk samples extracted from the
same tissue in each subject. Not all datasets use the same tissue for measurements, as diseases
do not necessarily affect the same tissue. Each patient is diagnosed with a single disease. For
comparisons, the data is normalized by using the frozen robust multiarray procedure [4] to remove
experimental bias. Furthermore, to remove tissue effects, each patient sample is normalised against
all the control samples of its original dataset using the Limma method [10]. Up to this point, the
data is identical to those used to derive the DMSN network [7]. Then we use the corrected p-values
output by Limma to define for each patient a vector of size corresponding to the number of genes
and in which the ith entry is equal to 1, −1, or 0 depending on whether the ith gene is significantly
(with 5% cutoff) over-, under-, or normally expressed, respectively, for that patient. Additionally,
we exclude patients that have no significantly deregulated genes, as we cannot learn anything from
them.

The set of diseases is curated by hand for associations with Disease Ontology codes [8], standard
ICD9 and ICD10 codes, MeSH terms and OMIM codes [5]. Some of the datasets come from studies
investigating subtypes of diseases that are studied by projects linked to other datasets. Based on the
number of patients in each study, those datasets were either merged with the more global disease,



or the patients associated with the more global disease were dropped from the study. Specifically,
we drop the global disease if the subtype has many more patients associated with it and merge
otherwise. Finally, we exclude diseases that have less than 10 associated patients to capture disease
heterogeneity in the final dataset and to have sufficient data for each disease to split in a training
and testing set.

SI Model A neural network can be expressed as a series of matrix multiplications interleaved
with non-linear functions, formally the output Y of a neural network with n− 1 hidden layers can
be written as Y = fn (Wnfn−1 (. . . f1((W1X))) where X represents the input data, Wi the weights
of layer i, and fi(·) the non-linear function applied to the output of the ith layer. The optimization

problem can be written as the minimization of the loss function L = g
(
Ŷ,Y

)
, where Ŷ is the

objective, or ground truth, and g(·) is a predefined function. Multinomial logistic regression (MLR)
and the proposed GDP architecture can be written as

Y1 = s
(
W1X

)
(1)

Y2 = s
(
W2

2 tanh
(
W2

1X
))

(2)

where s is the softmax function, typically used for multiclass classification problems and tanh de-
notes the hyperbolic tangent. Matrices X and Ŷ represent our data. Each column of X corresponds
to the differential gene expression of a patient, and each column of Ŷ corresponds to a patient’s di-
agnosis (the prediction of which is the objective of the framework). W1 ∈ Rnd×ng and W2

2 ∈ Rnd×np

correspond to fully-connected layers. The layer corresponding to W2
1 ∈ Rnc×ng represents biological

pathway membership of the genes, i.e. the trainable weights of the matrix correspond only to entries
(i, j) where gene j is part of the ith protein complex.

SI Methods Formally, the local variations δf of a single-argument function f due to a change
δx = x− x0 in input can be approximated with the first order Taylor expansion as

δf(x) =
df

dx
(x0)δx+O(x2).

Thus, the magnitude of the local variations of f with respect to perturbation δx from x0 is given
by | df

dx
(x0)|. Based on this approximation, we extract from each neural network a score between

an entity represented by a unit of the neural network (e.g, a pathway, or a gene) and each disease
(output unit). Specifically, for a neural network NN, we denote nni : [0, 1]ni 7→ Rno the function
corresponding to the operation of a neural network NN from the ni outputs of layer i to the final
no logits of the neural network, i.e. scores before softmax. E.g., for GPD, we have nn1

2(x) =
W2

2 tanh (W2
1x). Then, the association score si,j,k between the jth output unit of layer i, denoted

uij, of neural network NN, and disease k is given by

si,j,k =

∣∣∣∣∣
[
∂nni

∂uij
(x0)

]
k

∣∣∣∣∣ ,



where the reference point is chosen as the null vector, x0 = 0, which corresponds implicitly to a
healthy state in our formulation.

SI Metrics The cross-entropy loss (CLE) of a classifier is defined as

CLE =
1

m

m∑
i=1

n∑
j=1

−yij log(ŷij),

wherem represents the number of samples (patients), n the number of classes (diseases), yij indicates
if patient i is diagnosed with disease j (1 if true 0 otherwise), and ŷij is the jth output value of the
classifier for patient i. A relatively small CEL means that the output probability distribution of a
classifier is closer to the deterministic one-hot encoding of the true labeling, i.e. the classifier gives
a higher probability to the true class and a very small probability to the other classes.

The micro-averaged precision (Preµ) of a classifier gives a measure of the overall precision of the
classifier and is defined as

Preµ =
tp

m
,

where tp corresponds to the number of accurately classified patients and m represents the number
of patients.

The macro-averaged precision (PreM) of a classifer gives an average of the precision across the
different classes (diseases) and is defined as

PreM =
1

n

n∑
i=1

tpi
mi

,

where tpi corresponds to the number of accurately classified patients for disease i and mi represents
the number of patients diagnosed with the same disease. PreM can be more informative than Preµ
when considering the problem with class imbalance.

SI Baselines The Frequency of Differential Expression (FDE) score of a disease–gene association
corresponds to how frequently that gene is consistently differentially expressed in patients having
the disease, i.e., for disease d and gene g, the association score, sdg, is given by

sdg =

∣∣∣∣∣ 1

|Pd|
∑
p∈Pd

Xgp

∣∣∣∣∣ , (3)

where we amalgamate entities (disease, gene, and patient) with their indices, Pd denotes the set of
patients having disease d, and X corresponds to the data matrix introduced in Methods.

The Katz method uses disease specific Protein–Protein Interaction (PPI) network, where each
node of a standard PPI network is associated to a score (here the FDE of each gene for the disease



considered). The authors then use Katz-centrality on each disease PPI network to extract a final
score for each disease–gene association (here we use the absolute value). The higher the score,
the higher the association is expected to be true. We download the PPI data from BioGRID [6]
and IID [3] and create our PPI network from the union of both databases restricted to our set of
genes. Finally, we perform a grid-search to identify the best parameters for the model by trying to
maximise the area under the precision-recall curve metric.

2 Supplementary figures and tables

Disease Name Patients
Count

Disease Name Patients
Count

non-small cell lung carcinoma 490 amyotrophic lateral sclerosis 36
oral cavity cancer 248 juvenile myelomonocytic leukemia 34
psoriasis 223 nasopharynx carcinoma 31
myelodysplastic syndrome 187 sarcoidosis 30
bacterial sepsis 181 dermatomyositis 29
colorectal cancer 154 myositis 29
asthma 138 cervical cancer 28
mature T-cell and NK-cell lym-
phoma

131 multiple sclerosis 27

alzheimers disease 128 turner syndrome 26
kidney cancer 121 interstitial lung disease 25
schizophrenia 114 multiple myeloma 22
chronic obstructive pulmonary dis-
ease

89 type 2 diabetes mellitus 20

pilocytic astrocytoma 79 essential thrombocythemia 19
thyroid cancer 79 sjogrens syndrome 19
bladder carcinoma 79 jobs syndrome 18
cerebrovascular disease 78 sotos syndrome 18
adrenocortical carcinoma 77 oral mucosa leukoplakia 17
uremia 75 rhabdoid cancer 17
endometriosis 74 dengue disease 17
major depressive disorder 67 esophagus squamous cell carcinoma 17
irritable bowel syndrome 65 ulcerative colitis 17
stomach cancer 65 anogenital venereal wart 16
oligodendroglioma 64 alcoholic hepatitis 15
systemic lupus erythematosus 61 campylobacteriosis 14
hepatocellular carcinoma 59 spondylosis 14



myocardial infarction 57 vitiligo 14
breast cancer 57 mitochondrial metabolism disease 14
malignant pleural mesothelioma 55 osteosarcoma 14
glioblastoma multiforme 53 cornelia de lange syndrome 14
acute myeloid leukemia 52 aphthous stomatitis 13
autistic disorder 51 sinusitis 13
hcv infection 49 sickle cell anemia 13
hepatoblastoma 49 atrial fibrillation 13
pancreatic ductal adenocarcinoma 46 hepatitis b 12
prostate cancer 46 peripheral vascular disease 12
ovarian cancer 43 acne 12
monoclonal gammopathy of unde-
termined significance

43 crohns disease 11

medulloblastoma 41 leishmaniasis 11
polycythemia vera 41 follicular lymphoma 10
atopic dermatitis 40 myelofibrosis 10
trachoma 39 leigh disease 10
rosacea 38

Supplementary Table 1: Cohort size for each disease in the dataset.

hyperparameter 10 0.1 0.01 0.001 0
L1-regularization 2026± 4.3 24.5± 0.046 6.39± 0.003 2.71± 0.047 1.09± 0.066
L2-regularization 4.42± 4.8e−7 4.38± 0.012 3.48± 0.032 2.02± 0.026 /

dropout ratio 0.25 0.5 0.75 0.9 0
dropout 1.14± 0.121 1.10± 0.130 1.12± 0.086 1.10± 0.081 /

Supplementary Table 2: Results of cross-validation to fix regularisation hy-
perparameters (L1-, L2-, or dropout regularisations). The scores correspond to
cross-entropy loss. The best results are obtained with no regularisation (score in
bold).
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Supplementary Fig. 1: Train and test loss curve for the MLR model with re-
spect to the number of epochs during the cross-validation. The vertical black line
indicates the number of epochs which give the lowest loss.
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Supplementary Fig. 2: Train and test loss curve for the GDP model with re-
spect to the number of epochs during the cross-validation. The vertical black line
indicates the number of epochs which give the lowest loss.
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Supplementary Fig. 3: Precision-recall curve of our predictions for disease–genes
associations.
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Supplementary Fig. 4: ROC curve of our predictions for disease–genes associa-
tions.
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Supplementary Fig. 5: Precision-recall curve of our disease–pathways associa-
tions predictions.
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Supplementary Fig. 6: ROC curve of our disease–pathways associations predic-
tions.


