Manuscript Details

Manuscript number	TTBDIS_2020_51
Title	Widespread low-prevalence occurrence of Rickettsia helvetica in Ixodes ricinus ticks in southern Norway
Article type	Research Paper

Abstract

Rickettsia helvetica is a tick-borne pathogen that may cause severe human disease. Knowledge of its distribution in Norway, where Ixodes ricinus reaches its northern limit, is very sparse. It was detected only recently in Norway, but it is prevalent and widely distributed in I. ricinus ticks in the neighboring countries Sweden and Denmark. In this study 2396 questing adult, nymphal and larval I. ricinus ticks were collected from two counties in Norway and analyzed for the presence of R. helvetica using a specific real-time PCR targeting the citrate synthase gene gltA. A further 495 nymphal I. ricinus from a third county was analyzed for Rickettsia spp. using a different method that is not species-specific. The overall prevalence was 1.6 %. Local variations were observed, but prevalence was < 5 % at all locations.

Keywords	pyrosequencing; real-time PCR; sequencing; tick-borne pathogens
Corresponding Author	Vivian Kjelland
Corresponding Author's Institution	University of Agder & Sørlandet Hospital Health Enterprise
Order of Authors	Vivian Kjelland, Ingvild Bakken Myre, Benedikte Nevjen Pedersen, Hanne Kloster, Andrew Jenkins
Suggested reviewers	Peter Wilhemsson, snorre stuen

Submission Files Included in this PDF

File Name [File Type]

Cover letter_Rickettsia helvetica in Norway_Kjelland et al.docx [Cover Letter]

Rickettsia helvetica in Norway.docx [Manuscript File]

Submission Files Not Included in this PDF

File Name [File Type]

Figure 1.png [Figure]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Dear Editor(s),

We hope that our manuscript "Widespread low-prevalence occurrence of *Rickettsia helvetica* in *Ixodes ricinus* ticks in southern Norway" may be of value to the general readership of Ticks and Tick-Borne Diseases, and that it will be acceptable for publication in your journal.

The manuscript was initially submitted to Zoonoses and Public Health, however, was deemed of too limited public health significance for the journal (the full response can be seen below).

No other submissions/reports regarding this work has been done.

Sincerely, Vivian Kjelland & co-authors

<u>Full response from Zoonoses and Public Health:</u> Dear Dr. Kjelland:

I write you in regards to manuscript # ZPH-Jan-20-012.R1 entitled "Widespread low-prevalence occurrence of Rickettsia helvetica in Ixodes ricinus ticks in southern Norway" which you submitted to Zoonoses and Public Health.

In view of the criticisms of the reviewer(s) found at the bottom of this letter, your manuscript has been denied publication in the Zoonoses and Public Health.

Thank you for considering the Zoonoses and Public Health for the publication of your research. I hope the outcome of this specific submission will not discourage you from the submission of future manuscripts.

Kind regards, Dr. Jonathan Oliver Associate Editor, Zoonoses and Public Health <u>joliver@umn.edu</u>

Reviewer(s)' Comments to Author: The manuscript is of too limited public health significance. I recommend that you submit it elsewhere.

1 2		
2 3 4	1	Title: Widespread low-prevalence occurrence of Rickettsia helvetica in Ixodes ricinus ticks in
5 6	2	southern Norway
7 8	3	
9 10	4	Running title: Rickettsia helvetica in Norway
11 12	5	
13 14	6	Vivian Kjelland ^{a,b,*,} Ingvild Bakken Myre ^a , Benedikte Nevjen Pedersen ^c , Hanne Kloster ^a , Andrew
15 16	7	Jenkins ^c
17 18	8	
19 20 21	9	^a University of Agder, Faculty of Engineering and Science, Department of Natural Sciences,
22 23	10	Gimlemoen 25, NO-4630 Kristiansand, Norway
24 25	11	
26 27	12	^b Sørlandet Hospital Health Enterprise, Research Unit, P. O. Box 416, NO-4604 Kristiansand, Norway
27 28 29 30 31	13	
	14	^c University of South-Eastern Norway, Department of Natural Sciences and Environmental Health,
32 33	15	Gullbringveien 38, NO-3800 Boe, Norway
34 35	16	
36 37	17	*Corresponding author at: Department of Natural Sciences, University of Agder, Gimlemoen 25, 4630
38 39	18	Kristiansand, Norway. Tel.: +47 38 14 10 00. E-mail address: vivian.kjelland@uia.no (V. Kjelland).
40 41 42	19	
42 43 44	20	
45 46	21	Highlights
47 48	22	• First description of the prevalence and distribution of <i>R</i> . <i>helvetica</i> in <i>I</i> . <i>ricinus</i> ticks in Norway
49 50	23	• The pathogen was detected in all the three investigated counties
51 52	24	• Increased I. ricinus distribution & abundance lead to increased need for awareness
53 54	25	
55 56 57	26	
58 59		

27 Abstract

Rickettsia helvetica is a tick-borne pathogen that may cause severe human disease. Knowledge of its distribution in Norway, where Ixodes ricinus reaches its northern limit, is very sparse. It was detected only recently in Norway, but it is prevalent and widely distributed in I. ricinus ticks in the neighboring countries Sweden and Denmark. In this study 2396 questing adult, nymphal and larval I. ricinus ticks were collected from two counties in Norway and analyzed for the presence of R. helvetica using a specific real-time PCR targeting the citrate synthase gene gltA. A further 495 nymphal I. ricinus from a third county was analyzed for Rickettsia spp. using a different method that is not species-specific. The overall prevalence was 1.6 %. Local variations were observed, but prevalence was < 5 % at all locations. Keywords: pyrosequencing; real-time PCR; sequencing; tick-borne pathogens

3940 Introduction

Rickettsia helvetica is an emerging tick-borne pathogen mainly transmitted by Ixodes ricinus (Portillo et al., 2015). The bacterium was detected as early as 1979 in Switzerland, and it was confirmed to be a new member of the spotted fever group Rickettsiae (SFGR) in 1993 (Beati et al., 1993). Since its discovery, R. helvetica has been detected in many parts of Europe, including Scandinavia (Nilsson et al., 1997, Nielsen et al., 2004, Oteo and Portillo, 2012), and in other parts of the world, including Russia, South Africa and Thailand (Aung et al., 2014, Kartashov et al., 2017, Essbauer et al., 2018). Despite its widespread distribution, relatively few human cases have been reported. R. helvetica infections are primarily considered mild and self-limiting with un-specific symptoms such as fever, headache, myalgia or rash (Oteo and Portillo, 2012, Lindblom et al., 2016). However, the bacteria have also been isolated from cerebrospinal fluid of patients with meningitis of uncertain aetiology, and two cases of sudden cardiac death with perimyocarditis related to R. helvetica infection were reported in Sweden in 1999 (Nilsson et al., 1999, Nilsson et al., 2010).

120		
121	53	
122		
123	54	The reported infection prevalence in host-seeking <i>I. ricinus</i> in Europe is typically below 20 %, but
124 125		
126	55	varies from 1 % to 66 % (Sprong et al., 2009, Oteo and Portillo, 2012). The reasons for these striking
127	50	
128	56	differences in prevalence in various locations is still unknown, but may be due to a combination of
129	57	biotic factors such as reservoir capacity of the local tick host animals, and abiotic factors such as local
130	51	bothe factors such as reservoir capacity of the local tick host animals, and abiothe factors such as local
131 132	58	climatic conditions, and further studies are necessary to elucidate the ecological cycle of the
133		
134	59	pathogen. R. helvetica was recently detected in Norway, though a very low prevalence was reported:
135	60	
136	60	2/600 (0.3 %) adult I. ricinus ticks was infected (Quarsten et al., 2015). However, further studies are
137	61	necessary to describe the true infection prevalence in ticks in Norway. In the present study we
138 139	01	necessary to describe the true infection prevalence in ticks in Norway. In the present study we
140	62	investigated the prevalence of R. helvetica in 2891 I. ricinus ticks collected from 14 sites in southern
141		
142	63	Norway.
143		
144 145	64	
146		
147	65	Materials and methods
148		
149	66	
150 151		
152	67	Tick collection and DNA extraction
153	(0	
154	68	Host-seeking I. ricinus ticks were collected from 14 sites in the Norwegian counties Vestfold og
155	69	Telemark, Agder and Vestland (Table 1, Figure 1). The ticks were collected by flagging the
156	07	
157 158	70	undergrowth as previously described (Kjelland et al., 2010). The ticks were placed in plastic tubes
159		
160	71	containing 70 % ethanol and kept at 4°C until DNA extraction. Only <i>I. ricinus</i> ticks were found.
161	70	
162	72	
163 164	73	DNA was extracted by the commercial kit DNeasy® Blood & Tissue Kit (Qiagen, Germany) with some
165		
166	74	modifications as previously described (Kjelland et al., 2010) or by phenol-chloroform extraction
167		
168	75	(Halos et al., 2004) or by digestion with ammonium hydroxide (Jenkins et al., 2019) (Table 1). The 495
169 170	76	ticks from Vestfold og Telemark were pooled in groups with 5 ticks in each pool after extraction of
171	70	ticks from vestion og relemark were pooled in groups with 5 ticks in each pool after extraction of
172	77	DNA. Purified DNA was stored at -20°C until further analysis.
173		·
174	78	
175 176		
177		

Rickettsia helvetica specific real-time PCR

DNA extracts from the ticks collected in the counties Agder and Vestland were examined for R. helvetica by using a real-time PCR assay with primers and probe specific for a region of the gltA gene (Table 2). Real-time PCR was performed using StepOnePlus Real Time PCR System (Applied Biosystems Inc. (ABI), California, USA). The PCR mixture contained 10 μl TaqMan© Environmental DNA Master Mix 2.0 (ABI), 800 nM of each Rh primer (ABI), 800 nM Rh probe (ABI), 5 µl of template DNA and ddH₂O to the total reaction volume of 20 μ l. The PCR conditions were as follows: 40°C for 2 min and 95°C for 10 min, followed by 47 cycles of 95°C for 15 s, 56°C for 30 s and 72°C for 20 s. Optical detection of fluorescence intensity was done after each cycle. A synthetic plasmid containing the gltA sequence (GenBank accession number KU310588; the length of the gltA gene is 1308 bp, and the 101 bp real-time PCR target sequence corresponds to positions 907-1007) cloned into the vector pUC57 was constructed according to our specifications and obtained from GenScript (New Jersey, USA) and used as a positive control. Positive and negative controls were included in all runs.

Rickettsia spp. real-time PCR

Direct sequencing and pyrosequencing

The pooled DNA samples from Vestfold og Telemark county were examined for Rickettsia spp. as described by Stenos et al. (2005) with minor modifications. Briefly, the PCR mixture included 10 μ l TaqMan[®] Universal PCR Master Mix (ABI), 800 nM of each Rspp. primer (Eurofins Genomics, Ebersberg, Germany), 800 nM Rspp. probe (ABI), 5 μl of template DNA and ddH2O to the total reaction volume of 20 µl. The PCR conditions were as follows: 40°C for 2 min and 95°C for 10 min, followed by 47 cycles of 95°C for 15 s, 58°C for 30 s and 72°C for 20 s. Due to lack of material, the samples were not analyzed by the species specific real-time PCR or sequencing. Rickettsia conorii (Vircell, Granada, Spain) was used as positive control. Positive and negative controls were included in all runs.

Real-time PCR positive samples were subjected to direct sequencing or pyrosequencing of gltA. Briefly, in the direct sequencing the real-time PCR positive samples were re-amplified with a standard PCR where every reaction consisted of 2.5 µl 10XPCR Gold Buffer (ABI), 2.5 µl dNTP Mix (ABI), 2.5 µl MgCl₂ Solution (ABI), 0.2 µl AmpliTaq Gold[®] (ABI), 800 nM of each Rh primer, 5 µl template DNA and ddH_2O to the total reaction volume of 25 μ l. The cycling parameters were: 40°C for 2 min, 95°C for 10 min, then 47 cycles of 95°C for 15 s, 56°C for 30 s and 72°C for 20 s. PCR products were purified with ExoSAP-IT[®] (Affymetrix, California, USA) following the manufacturer's instructions, sequenced in both directions using BigDye® Terminator v.1.1 Cycle sequencing RR-100 (ABI), and analyzed with a 3130 Genetic Analyzer automated capillary sequencer (ABI). Before pyrosequencing the real-time PCR positive samples were re-amplified on the RotorGene Q (Qiagen GmbH, Hilden, Germany) using a biotinylated forward primer to achieve streptavidin binding in the pyrosequencing preparation. The reaction mixture contained 10 μ l TaqMan[®] Universal Master Mix II, with UNG (ABI), 250 nM biotin labelled Rh forward primer, 250 nM Rh revers primer, 300 nM Rh probe, 5 μ l template DNA and RNase free water to the total reaction volume of 20 μ l. The cycling parameters were: 50°C for 2 min, 95°C for 10 min, then 48 cycles of 95°C for 15 s, 56°C for 30 s and 72°C for 20 s. The real-time PCR products were analyzed on the Pyromark Q24 (Qiagen) according to the manufacturer's instructions, using 300 nM Rh revers primer and Pyrogold SQA reagents (Qiagen). Negative and positive controls were included in each run. The pyrogram of each sample was compared with the pyrogram of the positive control to determine true positive samples. Results In total, 2891 I. ricinus ticks were analyzed; 2165 from Agder county, 495 from Vestfold og Telemark county and 231 from Vestland county. Ticks collected in Vestfold og Telemark county was analyzed

296 297		
298 299	129	for the presence of Rickettsia spp., whereas the ticks collected in the two remaining counties were
300 301	130	analyzed with a real-time PCR specific for <i>R</i> . <i>helvetica</i> (Table 3).
302 303	131	
304 305	132	A total of 45/2396 samples yielded a positive <i>R. helvetica</i> real-time PCR result (Table 3). All 45 PCR
306 307	133	products yielded the expected fragment length (101 bp) when analyzed by agarose gel
308 309	134	electrophoresis. Of these, 11/45 samples were verified by direct sequencing or pyrosequencing. In
310 311	135	Vestfold og Telemark, Rickettsia spp. was detected in one tick pool.
312 313	136	
314 315 316	137	Discussion
317 318	138	The present study is the first to describe the prevalence of <i>R</i> . <i>helvetica</i> in host-seeking <i>I</i> . <i>ricinus</i> ticks
319 320	139	in Norway. In accordance with other European studies (Oteo and Portillo, 2012), a widespread
321 322	140	distribution of <i>R</i> . <i>helvetica</i> was found in southern Norway.
323 324	141	
325 326	142	The pathogen was detected in all three investigated counties, indicating a widespread distribution in
327 328 329	143	Norway. The infection prevalence was low throughout the sampling region, 3.9 %, 1.7 % and 0.2 % in
330 331	144	ticks collected in Vestland, Agder and Vestfold og Telemark, respectively.
332 333	145	
334 335	146	All samples positive in the R. helvetica specific real-time PCR were further analyzed in a direct
336 337	147	sequencing or a pyrosequencing assay. Eleven of 45 samples were successfully sequenced, and only
338 339	148	R. helvetica was detected. As several samples are close to the detection limit of the assays, it is not
340 341	149	possible to conclusively determine whether the samples that were not successfully sequenced are
342 343	150	false positives in real-time PCR, or true positives below the detection limit of the sequencing assays,
344 345	151	although estimation of the real-time PCR sensitivity and specificity favors the latter interpretation
346 347	152	(data not shown). Furthermore, agarose gel electrophoresis analysis of all samples positive in the <i>R</i> .
348 349	153	helvetica specific real-time PCR yielded amplicons of the expected size (101 base pairs). Thus,
350 351 352	154	although there is a degree of uncertainty regarding the exact prevalence of the pathogen, the study
352 353 354		

demonstrates a low infection rate of the pathogen in southern Norway. Correspondingly, the pathogen was previously detected in 0.3 % I. ricinus ticks collected in Agder county (Quarsten et al., 2015), which is consistent with the low prevalence found in this study. Most samples were analyzed using a real-time PCR specific for R. helvetica, however one set of samples was analyzed using a previously-published generic primer set for Rickettsia spp. One positive pool was detected, giving a minimum infection rate at 0.2 %. Unfortunately, genotyping of this sample could not be done due to lack of material. However, since most previous studies conducted in the Nordic countries have shown R. helvetica to be the predominant Rickettsia species in I. ricinus ticks in Scandinavia (Table 4), it may be assumed, although not conclusively, that the detected Rickettsia spp. was in fact R. helvetica. Interestingly, in the countries neighboring Norway the prevalence is significantly higher; in Sweden, the prevalence of R. helvetica in I. ricinus ticks reaches 17 % (Nilsson et al., 1999, Severinsson et al., 2010), whereas in Denmark up to 14 % is reported (Nielsen et al., 2004, Svendsen et al., 2009, Kantso et al., 2010, Michelet et al., 2014) (Table 4). This may reflect differences in methodology, although the methods used in present study coincided in part with those in the other studies (Table 4), in which case the results should be comparable. While it cannot be conclusively excluded that the observed differences between Norway and neighboring countries may be due to methodological differences it is well-known that the prevalence of pathogens in ticks varies between geographical regions, and seems to be influenced by the nature of the habitat, in particular which tick hosts that are found in the area. **Conclusions** Due to the substantial difference in the prevalence of R. helvetica in Norway and the neighboring countries, Sweden and Denmark, it is important to conduct further research in Norway to determine

if the prevalence is in fact significantly lower in this region, and if so to investigate the reasons for this discrepancy. The occurrence and pathogenicity of R. helvetica in humans in Norway remains largely unaddressed, probably due to nonspecific symptoms, unawareness and the lack of diagnostic tools. Although SFGR other than R. helvetica are rarely reported in Scandinavia, future studies should aim to determine whether other species are present or absent in Norway. Recently, studies have indicated an increased distribution and abundance of I. ricinus ticks in Norway (Hvidsten et al., 2015, Kjaer et al., 2019), which may lead to an increase in the number of human and animal tick-borne disease, and awareness of new emerging pathogens and their infections is increasingly important. **CRediT** author statement Vivian Kjelland: Conceptualization, Methodology, Investigation, Validation, Writing- Original draft preparation, Visualization, Supervision, Project administration, Funding acquisition. Ingvild Myre Bakken: Methodology, Investigation, Validation, Writing- Review & Editing. Benedikte Nevjen Pedersen: Methodology, Investigation, Validation, Writing- Review & Editing. Hanne Kloster: Methodology, Investigation, Validation, Writing- Review & Editing. Andrew Jenkins: Conceptualization, Methodology, Investigation, Validation, Writing- Review & Editing, Supervision. **Declaration of Competing Interest** The authors declare no competing interests. **Acknowledgements** This work was supported by the Interreg V Program (the ScandTick Innovation project, grant no. 20200422). We are grateful to Åshild Andreassen at the Norwegian Institute of Public Health for providing reagents and letting us use their laboratory facilities for the pyrosequencing assay. We are also grateful to Kristine Jensen, Martine Mesel, Silje Bersagel Skjæveland, Katrine Alice Broen and

473		
474		
475 476	206	Anna Grytaas for performing parts of the tick collection, DNA extraction and/or real-time PCR
477 478	207	analyses.
479 480	208	
481 482 483	209	References
484 485 486 487	210 211 212	Aung, A. K., D. W. Spelman, R. J. Murray and S. Graves (2014). Rickettsial infections in Southeast Asia: implications for local populace and febrile returned travelers. <u>Am J Trop Med Hyg</u> 91 (3): 451-460. doi:10.4269/ajtmh.14-0191
488 489 490 491 492	213 214 215 216	Beati, L., O. Peter, W. Burgdorfer, A. Aeschlimann and D. Raoult (1993). Confirmation that Rickettsia helvetica sp. nov. is a distinct species of the spotted fever group of rickettsiae. <u>Int J Syst Bacteriol</u> 43 (3): 521-526. DOI: <u>10.1099/00207713-43-3-521</u>
493 494 495 496	217 218 219 220	Essbauer, S., M. Hofmann, C. Kleinemeier, S. Wolfel and S. Matthee (2018). Rickettsia diversity in southern Africa: A small mammal perspective. <u>Ticks Tick Borne Dis</u> 9 (2): 288-301. DOI: <u>10.1016/j.ttbdis.2017.11.002</u>
497 498 499 500 501	221 222 223 224	Halos, L., T. Jamal, L. Vial, R. Maillard, A. Suau, A. Le Menach, H. J. Boulouis and M. Vayssier-Taussat (2004). Determination of an efficient and reliable method for DNA extraction from ticks. <u>Vet Res</u> 35 (6): 709-713. DOI: <u>10.1051/vetres:2004038</u>
502 503 504 505	225 226 227 228	Hvidsten, D., F. Stordal, M. Lager, B. Rognerud, B. E. Kristiansen, A. Matussek, J. Gray and S. Stuen (2015). Borrelia burgdorferi sensu lato-infected Ixodes ricinus collected from vegetation near the Arctic Circle. <u>Ticks Tick Borne Dis</u> 6 (6): 768-773. DOI: <u>10.1016/j.ttbdis.2015.07.002</u>
506 507 508 509 510 511 512	229 230 231 232 233 234	Jenkins, A., C. Raasok, B. N. Pedersen, K. Jensen, A. Andreassen, A. Soleng, K. S. Edgar, H. H. Lindstedt, V. Kjelland, S. Stuen, D. Hvidsten and B. E. Kristiansen (2019). Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. <u>BMC Microbiol</u> 19 (1): 199. DOI: <u>10.1186/s12866-019-1502-y</u>
513 514 515 516 517	235 236 237 238	Kantso, B., C. B. Svendsen, P. M. Jensen, J. Vennestrom and K. A. Krogfelt (2010). Seasonal and habitat variation in the prevalence of Rickettsia helvetica in Ixodes ricinus ticks from Denmark. <u>Ticks Tick Borne Dis</u> 1 (2): 101-103. DOI: <u>10.1016/j.ttbdis.2010.01.004</u>
518 519 520 521 522 523	239 240 241 242 243 244	Kartashov, M. Y., L. I. Glushkova, T. P. Mikryukova, I. V. Korabelnikov, Y. I. Egorova, N. L. Tupota, E. V. Protopopova, S. N. Konovalova, V. A. Ternovoi and V. B. Loktev (2017). Detection of Rickettsia helvetica and Candidatus R. tarasevichiae DNA in Ixodes persulcatus ticks collected in Northeastern European Russia (Komi Republic). <u>Ticks Tick Borne Dis</u> 8 (4): 588-592. DOI: <u>10.1016/j.ttbdis.2017.04.001</u>
524 525 526 527 528 529 530 531	245 246 247 248	Kjaer, L. J., A. Soleng, K. S. Edgar, H. E. H. Lindstedt, K. M. Paulsen, A. K. Andreassen, L. Korslund, V. Kjelland, A. Slettan, S. Stuen, P. Kjellander, M. Christensson, M. Teravainen, A. Baum, K. Klitgaard and R. Bodker (2019). Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using

532 533		
534 535 536	249 250	climatic and environmental data, Denmark, Norway and Sweden, 2016. <u>Euro Surveill</u> 24 (9). DOI: <u>10.2807/1560-7917.ES.2019.24.9.1800101</u>
537 538 539 540 541	251 252 253 254	Kjelland, V., S. Stuen, T. Skarpaas and A. Slettan (2010). Prevalence and genotypes of Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in southern Norway. <u>Scandinavian Journal of</u> <u>Infectious Diseases</u> 42 (8): 579-585. DOI: <u>10.3109/00365541003716526</u>
542 543 544 545 546	255 256 257 258 259	Lindblom, A., K. Wallmenius, J. Sjowall, L. Fryland, P. Wilhelmsson, P. E. Lindgren, P. Forsberg and K. Nilsson (2016). Prevalence of Rickettsia spp. in Ticks and Serological and Clinical Outcomes in Tick- Bitten Individuals in Sweden and on the Aland Islands. <u>PLoS One</u> 11 (11): e0166653. DOI: <u>10.1371/journal.pone.0166653</u>
547 548 549 550 551 552	260 261 262 263 264	Michelet, L., S. Delannoy, E. Devillers, G. Umhang, A. Aspan, M. Juremalm, J. Chirico, F. J. van der Wal, H. Sprong, T. P. Boye Pihl, K. Klitgaard, R. Bodker, P. Fach and S. Moutailler (2014). High-throughput screening of tick-borne pathogens in Europe. <u>Front Cell Infect Microbiol</u> 4 : 103. DOI: <u>10.3389/fcimb.2014.00103</u>
553 554 555 556	265 266 267 268	Nielsen, H., P. E. Fournier, I. S. Pedersen, H. Krarup, T. Ejlertsen and D. Raoult (2004). Serological and molecular evidence of Rickettsia helvetica in Denmark. <u>Scand J Infect Dis</u> 36 (8): 559-563. DOI: <u>10.1080/00365540410020776</u>
557 558 559 560	269 270 271	Nilsson, K., K. Elfving and C. Pahlson (2010). Rickettsia helvetica in patient with meningitis, Sweden, 2006. <u>Emerg Infect Dis</u> 16 (3): 490-492. DOI: <u>10.3201/eid1603.090184</u>
561 562 563 564 565	272 273 274 275	Nilsson, K., T. G. Jaenson, I. Uhnoo, O. Lindquist, B. Pettersson, M. Uhlen, G. Friman and C. Pahlson (1997). Characterization of a spotted fever group Rickettsia from Ixodes ricinus ticks in Sweden. <u>J Clin</u> <u>Microbiol</u> 35 (1): 243-247.
566 567 568 569	276 277 278	Nilsson, K., O. Lindquist, A. J. Liu, T. G. Jaenson, G. Friman and C. Pahlson (1999). Rickettsia helvetica in Ixodes ricinus ticks in Sweden. <u>J Clin Microbiol</u> 37 (2): 400-403.
570 571 572 573	279 280 281 282	Nilsson, K., O. Lindquist and C. Pahlson (1999). Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. <u>Lancet</u> 354 (9185): 1169-1173. DOI: <u>10.1016/S0140-6736(99)04093-3</u>
574 575 576 577 578	283 284 285 286 287	Oteo, J. A. and A. Portillo (2012). Tick-borne rickettsioses in Europe. <u>Ticks Tick Borne Dis</u> 3 (5-6): 271-278. DOI: <u>10.1016/j.ttbdis.2012.10.035</u>
579 580 581	287 288 289	Portillo, A., S. Santibanez, L. Garcia-Alvarez, A. M. Palomar and J. A. Oteo (2015). Rickettsioses in Europe. <u>Microbes Infect</u> 17 (11-12): 834-838. DOI: <u>10.1016/j.micinf.2015.09.009</u>
582 583 584 585 586 587 588 588 589	290 291 292 293 294	Quarsten, H., T. Skarpaas, L. Fajs, S. Noraas and V. Kjelland (2015). Tick-borne bacteria in Ixodes ricinus collected in southern Norway evaluated by a commercial kit and established real-time PCR protocols. <u>Ticks and Tick-borne Diseases</u> 6 (4): 538-544. DOI: <u>10.1016/j.ttbdis.2015.04.008</u>
590		

591		
592 593 594 595 596	295 296 297	Severinsson, K., T. G. Jaenson, J. Pettersson, K. Falk and K. Nilsson (2010). Detection and prevalence of Anaplasma phagocytophilum and Rickettsia helvetica in Ixodes ricinus ticks in seven study areas in Sweden. <u>Parasit Vectors</u> 3 : 66. DOI: <u>10.1186/1756-3305-3-66</u>
597 598 599 600 601	298 299 300 301 302	Skarphedinsson, S., B. F. Lyholm, M. Ljungberg, P. Sogaard, H. J. Kolmos and L. P. Nielsen (2007). Detection and identification of Anaplasma phagocytophilum, Borrelia burgdorferi, and Rickettsia helvetica in Danish Ixodes ricinus ticks. <u>APMIS</u> 115 (3): 225-230. DOI: <u>10.1111/j.1600-</u> <u>0463.2007.apm_256.x</u>
602 603 604 605 606	303 304 305 306	Sormunen, J. J., R. Penttinen, T. Klemola, J. Hanninen, I. Vuorinen, M. Laaksonen, I. E. Saaksjarvi, K. Ruohomaki and E. J. Vesterinen (2016). Tick-borne bacterial pathogens in southwestern Finland. <u>Parasit Vectors</u> 9 : 168. DOI: <u>10.1186/s13071-016-1449-x</u>
607 608 609 610 611	307 308 309 310	Sprong, H., P. R. Wielinga, M. Fonville, C. Reusken, A. H. Brandenburg, F. Borgsteede, C. Gaasenbeek and J. W. van der Giessen (2009). Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. <u>Parasit Vectors</u> 2 (1): 41. DOI: <u>10.1186/1756-3305-2-41</u>
612 613 614 615 616	311312313314	Stenos, J., S. R. Graves and N. B. Unsworth (2005). A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. <u>Am J Trop Med Hyg</u> 73 (6): 1083-1085. DOI:10.4269/ajtmh.2005.73.1083
617 618 619 620	315 316 317 318	Svendsen, C. B., K. A. Krogfelt and P. M. Jensen (2009). Detection of Rickettsia spp. in Danish ticks (Acari: Ixodes ricinus) using real-time PCR. <u>Scand J Infect Dis</u> 41 (1): 70-72. DOI: <u>10.1080/00365540802530653</u>
621 622 623 624 625	319 320 321 322	Wallmenius, K., J. H. Pettersson, T. G. Jaenson and K. Nilsson (2012). Prevalence of Rickettsia spp., Anaplasma phagocytophilum, and Coxiella burnetii in adult Ixodes ricinus ticks from 29 study areas in central and southern Sweden. <u>Ticks Tick Borne Dis</u> 3 (2): 100-106. DOI: <u>10.1016/j.ttbdis.2011.11.003</u>
626 627	323 324	
628 629 630	325	
631 632	326	
633 634	327	
635 636 637	328	
637 638 639	329	
640 641	330	
642 643	331	
644 645 646	332	
647 648 649	333	

Table 1. Overview of tick collection sites, time of sampling, the instar distribution, and the method

used for DNA extraction.

	County	Site	Year/month of	Number of ticks collected	DNA
		no.	sampling	(adults/nymphs/larvae/instar not	extraction
				determined)	method†
	Vestfold og	1	2012/9	495 (0/495/0/0)	Α
	Telemark				
	Agder	2	2012/5; 2012/8;	1267 (112/528/627/0)	Р
			2013/5; 2013/8;		
			2014/5; 2014/8		
		3	2017/10	24 (18/6/0/0)	Р
		4	2016/8	4 (4/0/0/0)	Q
		5	2016/8	13 (5/7/1/0)	Q
		6	2016/8	7 (4/3/0/0)	Q
		0	2010,0	. (, , , , , , , ,	4
		7	2016/8	187 (174/13/0/0)	Q
		8	2016/8	24 (15/9/0/0)	Q
		0	2010/0	24 (13) 7 0 0	4
		9	2017/8; 2017/9	109 (58/51/0/0)	Р
		10	2017/8	60 (0/0/60)	Р
		10	2017/0	00 (0, 0, 0, 00)	·
		11	2017/7; 2017/8	122 (49/71/2/0)	Р
		12	2017/10	112 (31/46/0/35)	Р
		12	2017/10	112 (31/40/0/33)	r
		13	2016/9	236 (36/131/69/0)	Q
	Vestland	14	2017/10	231 (8/164/0/59)	Р
	vestianu	14	2017/10	231 (8/104/0/39)	r
	Total			2891 (514/1524/699/154)	
226					
336	TDNA extractio	n metn	od: A = digestion by am	nmonium hydroxide; P = phenol chloroform e	xtraction; Q = D
337	blood and tissu	ıe kit, Q	iagen.		
220					
338					
339					
009					
340					

		Sequence (5' -	- 3')		Refe	rence
	Rh forward primer†	5'-CCGTTTAGC	GTTAATAGGCI	TCGG	This	study
	Rh reverse primer†	5'-CCGAGTTCC	CTTTAATACTT	CCTTACA		
	Rh probe†	5'-6-FAM-CGA	TCCACGTGCC	GCAGTACT-MGB	NFQ	
	Rspp. forward primer	5'-TCGCAAAT	GTTCACGGTAC	CTTT	Sten	os et al., 2005
	Rspp. reverse primer‡	5'-TCGTGCATT	TCTTTCCATTO	GTG		
	Rspp. probe‡	5'-6-FAM-TGC	AATAGCAAGA	ACCGTAGGCTG	GATG-	
		BHQ-1				
	†PCR target: part of the	e gltA gene specifi	c for Rickettsic	a helvetica		
	‡PCR target: part of the	e gltA gene detecti	ng Rickettsia s	spp.		
1						
4						
5	Table 3. Rickettsia helv	etica and Rickettsi	a spp. detecte	d by real-time P(CR in questing	Ixodes ricinus
5	Table 3. Rickettsia helv			d by real-time P(CR in questing	Ixodes ricinus
5	Table 3. <i>Rickettsia helv</i> ticks collected in three			d by real-time PC	CR in questing	Ixodes ricinus
5				d by real-time PC	CR in questing Larvae,	Ixodes ricinus Instar not
,)	ticks collected in three	counties in Southe	rn Norway.			
	ticks collected in three	counties in Southe Total,	Adults,	Nymphs,	Larvae,	Instar not
5	ticks collected in three	counties in Southe Total,	Adults,	Nymphs,	Larvae,	Instar not determined
	ticks collected in three	counties in Southe Total, % (n/N)	Adults,	Nymphs, % (n/N)	Larvae,	Instar not determined (n/N)
	ticks collected in three County Vestfold og Telemark	counties in Southe Total, % (n/N)	Adults,	Nymphs, % (n/N)	Larvae,	Instar not determined (n/N) 0
	ticks collected in three County Vestfold og Telemark (Rspp†)	counties in Southe Total, % (n/N) 0.2 (1/495) ‡	rn Norway. Adults, % (n/N)	Nymphs, % (n/N) 1/495†	Larvae, % (n/N)	Instar not determined (n/N)
	ticks collected in three County Vestfold og Telemark (Rspp†) Agder (Rh†)	counties in Southe Total, % (n/N) 0.2 (1/495) ‡ 1.7 (36/2165)	ern Norway. Adults, % (n/N) 13/506	Nymphs, % (n/N) 1/495† 19/865	Larvae, % (n/N)	Instar not determined (n/N) 2/95 2/59
5	ticks collected in three County Vestfold og Telemark (Rspp†) Agder (Rh†) Vestland (Rh†)	counties in Southe Total, % (n/N) 0.2 (1/495) ‡ 1.7 (36/2165) 3.9 (9/231) 1.6 (46/2891)	ern Norway. Adults, % (n/N) 13/506 0/8 2.5 (7/514)	Nymphs, % (n/N) 1/495† 19/865 7/164	Larvae, % (n/N) 2/699	Instar not determined (n/N) 2/95 2/59
5 5 7	ticks collected in three County Vestfold og Telemark (Rspp†) Agder (Rh†) Vestland (Rh†) Total	counties in Southe Total, % (n/N) 0.2 (1/495) ‡ 1.7 (36/2165) 3.9 (9/231) 1.6 (46/2891) :: Rickettsia helvetica	ern Norway. Adults, % (n/N) 13/506 0/8 2.5 (7/514)	Nymphs, % (n/N) 1/495† 19/865 7/164 1.8 (26/1524)	Larvae, % (n/N) 2/699 0.3 (2/699)	Instar not determined (n/N) 2/95 2/59 1/154
4 5 6 7 8 9 0	ticks collected in three County Vestfold og Telemark (Rspp†) Agder (Rh†) Vestland (Rh†) Total †Rspp: Rickettsia spp.; Rh	counties in Southe Total, % (n/N) 0.2 (1/495) ‡ 1.7 (36/2165) 3.9 (9/231) 1.6 (46/2891) :: Rickettsia helvetica Id og Telemark was a	ern Norway. Adults, % (n/N) 13/506 0/8 2.5 (7/514) n. analyzed in poo	Nymphs, % (n/N) 1/495† 19/865 7/164 1.8 (26/1524)	Larvae, % (n/N) 2/699 0.3 (2/699)	Instar not determined (n/N) 2/95 2/59 1/154

Table 4. Prevalence of *Rickettsia helvetica* in *Ixodes ricinus* ticks collected in the Nordic countries

353 (Norway, Sweden, Denmark, Finland and Iceland). To our knowledge, the pathogen is not detected in

775 354 Iceland.

Country	DNA extraction method†	PCR target	Rickettsia species other than R. helvetica	R. helvetica prevalence
Norway	CK or P or A	Rickettsia spp. or R. helvetica	Not analyzed	1.6 % (present study)
	СК	Rickettsia spp.	No	0.3 % (Quarsten, Skarpaas et al. 2015)
Sweden	Р	Rickettsia spp.	No	1.2-11.2 % (Lindblom, Wallmenius et al. 2016)
	Р	Rickettsia spp.	1/887: possible Rickettsia sibirica	9.5-9.6 % (Wallmenius, Pettersson et al. 2012)
	Р	Rickettsia spp.	No	1.5-17.3 % (Severinsson, Jaenson et al. 2010)
	Р	Rickettsia spp.	No	MIR 16 %‡ (Nilsson, Lindquist et al. 1999)
	Р	Rickettsia spp.	No	1.7 % (Nilsson, Jaenson et al. 1997)
Denmark	A	Rickettsia spp.	No	4.7 % (Kantso, Svendsen et al. 2010)
Deninark	A	Rickettsia spp.	No	13 % (Svendsen, Krogfelt et al. 2009)
	CK or A	R. helvetica	Not analyzed	0.1 % (Skarphedinsson, Lyholm et al. 2007)
	Р	Rickettsia spp.	No	4 % (Nielsen, Fournier et al. 2004)
	СК	Rickettsia spp.	No	14 % (Michelet, Delannoy et al. 2014
Finland	СК	Rickettsia spp.	1/3169:	1.1-5.1 % (Sormunen, Penttinen et a
			R. monacensis nium hydroxide; P = phenol o gen or The Qiagen DNA Mini	2016) chloroform extraction; CK = kit, Qiagen <i>o</i> r QIAampA DNA mini
Commercial kits, Qiagen	kit (DNeasy b	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini	chloroform extraction; CK =
Commercial kits, Qiagen Promega).	kit (DNeasy b <i>or</i> NucleoSpir	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega).	kit (DNeasy b <i>or</i> NucleoSpir	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen or QIAampA DNA mini
Commercial kits, Qiagen Promega).	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega). ‡The author	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega). ‡The author	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega). ‡The author	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega). ‡The author	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,
Commercial kits, Qiagen Promega). ‡The author	kit (DNeasy b or NucleoSpir s estimated th	lood and tissue kit, Qiag	nium hydroxide; P = phenol o gen <i>or</i> The Qiagen DNA Mini , Macherey-Nagel <i>or</i> Wizard	chloroform extraction; CK = kit, Qiagen <i>or</i> QIAampA DNA mini genomic DNA purification kit,

827 828		
829	367	Legend to Figure 1
830 831 832 833 834 835 836	368	Host-seeking Ixodes ricinus ticks were collected from 14 sites in 3 counties in southern Norway;
	369	Jomfruland (1) in Vestfold og Telemark county, Tromøy (2), Tveit (3), Rogeheia (4), Eikelandsdalen
	370	(5), Bommen (6), Ravnås (7), Kvarstein (8), Eg (9), Baneheia (10), Odderøya (11), Voiebyen (12) and
837 838 839	371	Trysnes (13) in Agder county, and Osterøy (14) in Vestland county (map created in QGIS 3.10.1).
840 841 842 843	372	
844 845 846		
847 848 849 850		
851 852 853 854		
855 856 857		
858 859 860		
861 862 863		
864 865 866		
867 868 869 870		
871 872 873		
874 875 876		
877 878 879		
880 881 882		
883 884 885		