
S1 Appendix

Data analysis

Topic networks and temporal null networks were created, visualized, and analyzed in
the R statistical environment [1] using the iGraph package [2]. Benchmark random
networks were generated using the Brain Connectivity Toolbox in MATLAB [3], but
were analyzed using the iGraph package. Community detection was carried out in
MATLAB using the GenLouvain toolbox [4]. Correlation coefficients and probability
values were obtained using the Hmisc package in R [5].

Network Measures

Here we provide a brief description of the more common network measures used in this
study.

The degree of a node is the number of edges, regardless of weight, connected to the
node [3]. Degree then represents one aspect of the node’s importance, measured by the
number of neighbors it has in the network. It is defined as follows:

ki =
∑
j∈N

aij , (1)

where N is the set of all nodes in the network, and aij is 1 if nodes i and j are
connected by an edge and 0 if not.

The strength of a node is the sum of the weights of all edges connected to the
node [3]. This measure is similar to degree in that it sums a node’s connecting edges,
but strength additionally allows for edges of varying weights. It is defined as follows:

si =
∑
j∈N

wij , (2)

where wij is the weight of the edge between nodes i and j if they are connected and 0 if
not.

The betweenness centrality of a node is the proportion of all shortest paths
within the network that pass through the given node [6]. Betweenness centrality
represents the extent to which a specific node functions as a bridge between nodes in
disparate parts of the network. It is defined as follows:

bi =
1

(n− 1)(n− 2)

∑
h,j∈N ;h6=j,h 6=i,j 6=i

ρ
(i)
hj

ρhj
, (3)

where ρhj is the number of shortest weighted paths between h and j, ρ
(i)
hj is the number

of shortest weighted paths between h and j that pass through node i, and n is the
number of nodes in the graph.
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The participation coefficient of a node is the extent to which it is strongly
associated with nodes in modules or communities other than its own [7]. Participation
falls between 0 and 1, with higher values representing more diversity within a node’s
connections. It is defined as follows:

ywi = 1−
∑
m∈M

(
si(m)

si

)2

,

where M is the set of modules and si(m) is sum of edge weights from node i to other
nodes in module m.

The clustering coefficient of a node can be defined as the probability that two of
its adjacent nodes are connected to each other. A node’s clustering coefficient then
represents the amount of interconnectedness in a node’s local neighborhood. The
version used in the current study is a measure of transitivity, as given by Barrat [8]. It
is defined as follows:

twi =
1

si(ki − 1)

∑
h,j∈N

(wij + wih)

2
aijaihahj . (4)

The global efficiency of a network can be defined as the average inverse shortest
path length between any two nodes [9]. Global efficiency is often thought of as
representing the amount of integration within and between disparate parts of the
network. It is defined as follows:

Ew =
1

n

∑
i∈N

∑
j∈N ;j 6=i d

−1
ij

n− 1
, (5)

where dij is the shortest weighted path length between node i and node j, defined as
the minimum distance required to traverse the graph from node i to node j. The
algorithm for calculating this measure is described by Newman [10].

The path length of a network is the average shortest path length between all node
pairs [11]. In many graphs, path length is inversely correlated with global efficiency, and
is therefore often interpreted as representing an alternative measure of network
integration. A version of the path length for a weighted network is as follows:

L =
1

n(n− 1)

∑
i 6=j

dij . (6)

The small-world propensity measures the extent to which a network is
characterized by high levels of local clustering and low average path length [12]. It is
defined as follows:

Φ = 1−
√

∆2
T + ∆2

L

2
, (7)

where
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∆T =
Tlattice − Tobserved
Tlattice − Trandom

, (8)

and

∆L =
Lobserved − Lrandom

Llattice − Lrandom
, (9)

with T representing the network clustering (transitivity) coefficient, defined as the
average node-specific twi values.

The stochastic block model assumes a community structure in which between-
and within-group connections occur with a specific probability (in the unweighted case)
or an expected edge weight (in the weighted case). Unlike modularity, which
characterizes a community structure with many (strong) connections within groups and
few (weak) connections between groups, the stochastic block model characterizes a
community structure with consistent connection patterns within and between groups.
For the unweighted case [13], it is defined as follows:

Pg,B(A) =
∏
i 6=j

Baij
gigj

(
1−Bgigj

)(1−aij)
, (10)

where g ∈ 1, ...,Kn is a vector of community memberships, assuming K distinct
communities, and B ∈ [0, 1]KxK is a matrix of community-wise edge probabilities.

For the exponential weighted framework used in the current study [14], the model is
defined as follows:

Pg,Λ(A) =
∏
i6=j

Λgigje
−Λgigj

wij , (11)

where Λ ∈ [0,∞)KxK is a matrix of community-wise rate parameters.
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