S2 Appendix

PVI and AVI are independent of the order of their elements

We proof that PVI (\overrightarrow{T}) and AVI (\overrightarrow{A}) are independent of the order of the elements within \overrightarrow{T} or \overrightarrow{A} .

THEOREM B: Let N be an integer ≥ 2 , let \overrightarrow{A} and \overrightarrow{T} be vectors in \mathbb{R}^N in real numbers, which are component-wise greater than zero. Then:

- a) $PVI(T_0,...,T_{N-1}) = PVI(T_{p(0)},...,T_{p(N-1)})$ for any bijective $p:\{0,...,N-1\} \to \{0,...,N-1\}$ b) $AVI(A_0,...,A_{N-1}) = AVI(A_{p(0)},...,A_{p(N-1)})$ for any bijective $p:\{0,...,N-1\} \to \{0,...,N-1\}$ Proof:
- a) we define:

$$\bar{T} = \frac{1}{N} \sum_{j=0}^{N-1} T_j$$
 , $T_{sum} = \sum_{i=0}^{N-1} |T_i - \bar{T}|^2$

and observe:

$$\begin{aligned} PVI(\overrightarrow{T}) &= 1000 \cdot \frac{\frac{1}{N} \sum_{i=0}^{N-1} \left| T_i - \frac{1}{N} \sum_{j=0}^{N-1} T_j \right|^2}{\left(\frac{1}{N} \sum_{j=0}^{N-1} T_j \right)^2} \\ &= 1000 \cdot \frac{\frac{1}{N} \sum_{i=0}^{N-1} \left| T_i - \overline{T} \right|^2}{\left(\overline{T} \right)^2} \\ &= 1000 \cdot \frac{\frac{1}{N} T_{sum}}{\left(\overline{T} \right)^2} \end{aligned}$$

As neighter T_{sum} nor \overline{T} depend on the order of \overrightarrow{T} this is also true for PVI.

b)
$$AVI(\overrightarrow{A}) = log_{10} \left(PVI(\overrightarrow{A}) \right)$$
.

Thus AVI (\vec{A}) is independent of the order of the elements in \vec{A} as well.

November 23, 2018 1/1