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1 Traditional quantum walk
Discrete time quantum walks evolve in the Hilbert space, (Hx ⊗

Hc) of position and coin subspaces, respectively, whereby each
position ({|x〉}∞−∞) occupied by the walker has an internal coin
state ({|H〉 , |T 〉} = |c〉Tc = H) associated with it. Evolution of the
walker is then achieved by successive unitary operations of a
coin operator such as the Hadmard coin,

ĈH =
1
√

2
(|H〉 + |T 〉) 〈H| + (|H〉 − |T 〉) 〈T | , (S1)

acting on the walker internal coin state at each position, flipping
the coin and a shift operator,

Ŝ =
∞∑

x = −∞

|x + 1〉 〈x|⊗|H〉 〈H|+
∞∑

x = −∞

|x − 1〉 〈x|⊗|T 〉 〈T | , (S2)

that propagates the walker right (left) at each position according
the internal heads (tails) coin state. Concatenation of these
operations to generate the step operator for the example of a
Hadamard walk,

ÛH = ĈH Ŝ =
−∞∑

x =∞

(
|x + 1〉 〈x| ⊗

1
√

2
(|H〉 + |T 〉

)
〈H| (S3)

+

−∞∑
x =∞

(
|x − 1〉 〈x| ⊗

1
√

2
(|H〉 − |T 〉

)
〈T | ,

then results in one full step when applied to the walker with an
initial state such as |ψ〉0 = |0〉 ⊗ |H〉. Implementation of the step
operator, causes the state of the walker to change according to
the number of steps or implementations, n,

|ψ〉n = Ûn
H |ψ〉0 =

d∑
x = 0

[cH,x |H, x〉 + cT,−x |T,−x〉] (S4)

where cH,x and cT,−x are complex amplitudes indicating
the probability of the walker occupying each position and
d = (2n + 1) is the dimension of the space occupied by the
walker. With each step, the walker moves to adjacent positions
on the 1D line. Subsequently, when occupying two consecu-
tive positions before the step, overlap in positional occupation
occurs for shared movements. The complex amplitude of the
walker thus interferes to generate a different probability distribu-
tion over the position spaces than the classical random walk [1].
Measurement of the QW superposition collapses the superpo-
sition, forcing the walker to localize at a particular position (x)
with the associated probability

Px,n = | 〈x|ψn〉 |
2. (S5)

Figure S1 shows the probability distribution P(x) for the
walker after taking n = 100 steps for symmetrical and asymmet-
rical initial states with a Hadamard coin.

Here it can be seen that the probability of finding the walker
is closest to the ends of the distribution as the walker destruc-
tively interferes with itself at the center. Moreover, by changing
the phase of the initial state, the interference may also be al-
tered to generate a distribution where the greatest probability is
weighted more to one direction of the position space as seen by
the larger spike in probability to the left in (b).

Action of the coin operator additionally causes the coin and
position states to become entangled as may be seen in the non-
separable form of Eq. S4. It is these dynamics which causes the
QW to obtain the different characteristics such that it may be
exploited for the simulation and computation applications with
up to ballistic speedups.
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Fig S1. Graph of the probability distribution for a
1-dimensional Hadamard QW after 100 successive movements
or steps for a (a) symmetrical and (b) asymmetrical input state.

2 Methods and materials

2.1 Detailed experimental setup

A schematic of the actual experimental setup is given as Fig. S2.
Here a pulsed laser (Spectraphysics Quanta-Ray DCR-11) at
a wavelength of 1064 nm generated a single input light pulse
with 0 OAM (initial position of the walker). As we did not have
an gated detector for this wavelength the laser was frequency
adjusted by second harmonic generation, resulting in the high
losses of the system and hence limiting the maximum number of
steps possible. To this end a non-linear SHG crystal converted
the wavelength to 532 nm through frequency doubling to remain
within the ICCD (iStar AndOR) detection range. This step pro-
hibited amplification within the cavity due to the lack of suitable
gain media at this wavelength. Structuring a Gaussian intensity
distribution of appropriate beam size was accomplished through
a spatial filter which led to significant losses, thus limiting the
maximum step number we could achieve. Propagation of the
pulse through a HWP served to prepare the input polarization
state symmetry (e.g., diagonal polarization for a symmetrical
Hadamard QW), after which, it was injected into the resonator
(3 m perimeter) by a 50:50 non-polarizing beam-splitter. Place-
ment of the QP (q = 0.5) and WP concatenation initialized the
QW and advanced it by one step with each consecutive round
trip. The output pulse from the beam-splitter was subsequently
imaged from the QP plane to the mode sorter. Alignment of the
mode sorter was attained by constructing an adjoining OAM
mode generation setup (see Supplementary Information). Here
a 532 nm wavelength diode laser was expanded with a 10×
objective lens and collimated through an f = 300 mm lens onto
an SLM where phase and amplitude modulation was utilized to
generate superpositions of LG beams. A 4-f system was built to
isolate and image the 1st diffraction order onto the mode sorter.
The SLM generated mode was then combined and aligned with
the output mode from the resonator with a 50:50 BS. By passing
test OAM superpositions from the SLM through the MS, opti-
mal alignment of the elements was then achieved. The Fourier
plane of the MS configuration was directed and imaged onto
the ICCD plane with another 4-f system. Choice placement of a
popup mirror before the MS and within the FP imaging system
allowed the QP plane image to be re-imaged onto the ICCD
with a lens placed between the pop-up mirrors. The second lens
in the MS imaging system then served a dual purpose as the sec-
ond imaging lens in the 4-f re-imaging system of the QP plane.
This allowed the output beam structure for each pulse to be
individually captured for each round trip, simplifying the align-
ment process. Subsequent capture of each round-trip pulse was
achieved through utilization of an iStar AndOR ICCD camera
with a temporal resolution on the 10 ns scale. Synchronization
between the initial laser pulse and recording window of the
camera was attained with a Stanford delay generation working
in combination with the iStar on-board digital delay generator.

2.2 The q-plate
2.2.1 Action of the q-plate

The q-plate (QP) used in our experiment was a patterned liquid
crystal static element which imparted geometrical phase to the
light field transmitted through. Here the charge (q) of the plate
dictates the OAM value generated while the polarization of the
incoming beam controls the handedness of the OAM generated
[2]. It follows that polarization could thus be used as a control
for the laddering of OAM to higher or lower values in either
handedness (positive or negative OAM). Operation of the QP in
the circular polarisation basis is given by the Jones matrix [3, 4]

QP =
[

0 ie−i2qφ

iei2qφ 0

]
(S6)

Incident right circular polarisation (RCP), |R〉 = [1; 0], then
gains the phase, ei2qφ, resulting in an OAM of l = 2q~ per
photon. The polarization is subsequently flipped to left circular
polarisation (LCP) in the process. Similarly, LCP, |L〉 = [0; 1],
acquires the phase e−i2qφ, resulting in negative OAM of l =
−2q~. The i-value multiplying the phase terms is global and
thus may be ignored. It follows that the QP operation may be
condensed into the following selection rules:

Q̂P |l,R〉 = |l + 2q, L〉 (S7a)

Q̂P |l, L〉 = |l − 2q,R〉 (S7b)

Additionally, this effective twisting of the light beam pro-
duced by geometric phase has further implications in the physi-
cal interpretation whereby the CP polarization may also be seen
in terms of spin angular momentum (SAM). Here when RCP
is incident on the QP, OAM of 2q~ per photon is generated,
and the flip in CP corresponds to a flip in SAM from 1~ per
photon to −1~. It is well known that transference of SAM and
OAM can occur between light and certain matter [4]. Here,
SAM interaction occurs in optically anisotropic media such as
birefringent material and OAM in transparent inhomogeneous,
isotropic media [2]. The combination of a thin birefringent
(liquid crystal) plate with an inhomogeneous optical axis in the
QP subsequently results in the element coupling these two form
of angular momentum such that flipping in the SAM may be
seen to generate OAM, making the QP a spin-to-orbital angu-
lar momentum converter (STOC) where the symmetry of the
optical axis patterning effects the conversion values [4].

Characterisation of the q = 0.5 QP used was then carried
out. Figure S3 illustrates the experimental setup implemented to
achieve this. A horizontally polarized HeNe laser (wavelength
633 nm) was shone through a QWP before being incident on the
QP. A polarization grating (PG) was placed before a Spiricon
SPU620 camera which acted to spatially separate the left and
right CP of the QP generated beam.

Variation of the incoming SAM or CP onto the QP was
obtained by rotating the QWP fast axis. It follows that superpo-
sitions of SAM with various weightings was incident onto the
QP based on the QWP angle. These input weightings are shown
in Fig S4 (a) through projection into RCP and LCP states. The
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Fig S2. Schematic of the actual setup constructed for physical implementation of the QW.

Fig S3. (a) Schematic of the experimental setup used to
examine the SAM conversion and mode generation of a q = 0.5
QP.

calculated and measured outcome of passing these CP superpo-
sitions through the QP is given in Fig. S4 (b) which was also
projected into the CP basis. Comparison of these two figures
show that the LCP and RCP input weightings are inverted after
passing through the QP. For instance, at 45o, RCP generated
by the QWP is detected as LCP after passing through the QP.
Similarly, at 135o, the generated LCP is converted to RCP after
the QP. At 105o, CP state with majority weighting is changed
from LCP after the QWP to RCP after the QP. It follows that
the QP acts to invert the SAM of the incident beam.

Further observation of the spatial modes of the beams can
be seen from the insets. Here the Gaussian profile of the input
beam is evident in Fig. S4 (a) with the false colour map. The
spatial profile of the beam after the QP shows the doughnut

distribution with a central intensity null, characteristic of OAM
carrying beams. These modes consequently, indicate that OAM
is generated by the QP along with the reversal of CP for both
incoming LCP and RCP as well as superpositions thereof, as
expected from the selection rules in Eq. S7. Moreover, by al-
tering the face through which the beam was incident from front
to back, the directional consistency of the element was deter-
mined. The experimental outcome is given in Fig S4 (c) where
the QP side of incidence was reversed in the setup, causing the
incoming beam to traverse through the ’back’ of the element.
Comparison of Fig S4 (b) and (c) shows the experimentally mea-
sured projections are identical with the QP reversed, enacting
the same SAM inversion on the incoming beam. Therefore, it
may be concluded that the QP operation follows a directional
invariance in performance.

2.2.2 A classical entanglement generator

When the input to the QP is a linear polarisation state, say
horizontal, then the output may be expressed as

Q̂P |0,H〉 =
i
√

2
Q̂P[|0, L〉 − |0,R〉] =

i
√

2
[|−1,R〉 − |1, L〉]

(S8)
From the expected states formed, the spatial mode described

by OAM = −1 is paired to RCP while OAM = 1 is paired to LCP.
As a result, these OAM and polarization degrees of freedom in
the beam form a non-separable relation such that neither can be
factored out. Experimentally, the generated mode is shown as
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Fig S4. Spin angular momentum transformations by the QP for
varying incident superpositions as shown in (a) with left and
right CPs. Here (b) are the corresponding output modes when
incident upon the front side of the QP as well as (c) the back
side of the QP.

the rightmost upper beam in Fig. S5 with a doughnut spatial
distribution. Separation of this mode into the CP basis yielded
the modes to the left of the image where the respective CPs are

superimposed on the images.

Fig S5. Example of the QP classically entangling polarization
and spatial degrees of freedom with the generation of an
azimuthally polarized vector vortex beam from a vertically
polarized Gaussian input (scalar beam).

By replacing the PG shown in the experimental setup of Fig
S3 with a linear polarizer, the generated mode was projected
into the linear polarisation basis. Here, the non-separability of
the spatial mode can be seen where lobes are detected that rotate
with the polarizer orientation. Specifically, from the leftmost
projected distribution, vertical orientation of the lobes coin-
cides with the vertical orientation of the polarizer. Rotating the
polariser though to anti-diagonal, horizontal and diagonal orien-
tations as depicted by the arrows above these images shows the
lobes assuming the same directionality. It follows that the pro-
jective measurements yield the polarization distribution overlaid
on the image of the generated beam. The subsequent pairing
of the OAM and SAM modes in this instance resulted in an
azimuthal vector vortex beam being generated. Accordingly,
the QP may be seen as a ”classical entanglement” generator
such that orthogonal modes may be both paired and laddered
with this element.

2.3 The mode sorter
2.3.1 Orbital angular momentum detection

Orbital angular momentum mode sorting relies on the appli-
cation of geometric coordinate transformation. The technique
takes advantage of the circular geometry associated with OAM
such that a geometrical mapping translates circular to rectan-
gular geometry [5] as illustrated in Fig. S6 (a). The resultant
phase distribution unwrapping causes OAM to be transformed
into transverse momentum with a linear phase gradient [6] as
demonstrated in the (u, v) coordinate space of the figure.

Physically, this (x, y) → (u, v) transformation is achievable
through application of a phase distribution, described in Eq. S9.

ϕ1(x, y) =
d
λ f

[y tan−1(
y
x

) − x ln(

√
x2 + y2

b
) + x] (S9)

March 20, 2019 4/19



Fig S6. The (a) illustration of a conformal mapping which
‘unwraps’ an OAM = 2 mode to a transverse phase gradient and
the phase distributions preforming the (a) mapping
transformation and (b) correction due to path length
differences.

Visualization of the distribution is shown in Fig. S6 (b). Here
d is the fixed unwrapped beam length, b affects the location in
the (u, v) plane, λ is wavelength and f the transforming lens
focal length. Associated phase distortions in the ‘unwrapped’
beam from optical path length variation requires correction by a
second phase distribution, described in Eq. S10 [5, 6] and Fig
S6 (c).

ϕ2(u, v) =
db
λ f

e
−2πu

d cos(
2πv
d

) (S10)

The resultant phase distribution unwrapping causes OAM to
transform to transverse momentum as it propagates. A trans-
verse phase gradient of eil tan−1 ( y

x ) = eil 2πv
d across the beam

length is then generated [5–7]. The unwrapped beam in the
Fourier plane (FP) of a lens forms a diffraction-limited elon-
gated spot [6]. As the unnwrapped mode contains a phase
gradient limited to the length, d, each OAM mode results in a
transverse phase gradient that is integer-multiples of the other
(shown in Fig. S7 (a)).

The lens then forms the spot at a gradient related position in
the focal plane due to its Fourier transforming action. The spot
position (t) is then OAM-dependent [5].

t =
λ f l
d

(S11)

Moreover, intensity of the spot indicates the ‘amount’ of any
OAM-mode present. The mode sorter technique employed
with refractive elements allows for efficient detection of a large
range of OAM modes and the associated weightings, enabling
detection of low intensity sources and in comparison to other
techniques such as the SLM modal decomposition mentioned
earlier.

A distinct disadvantage occurs with this technique, however,
when considering cross-talk between adjacent modes. Due to

Fig S7. Colour map illustration of the phase gradient resulting
from the OAM geometric transformation for (a) l = -1, (b) l = 1
and (c) l = 2. (d) Depiction of the sorting action performed by a
Fourier transforming lens after the phase correction element.

the finite unwrapped beam size, the width of the spot created
in the FP is diffraction-limited, resulting in a constant overlap
between modes [5, 6]. It was subsequently demonstrated that a
maximum of 80% may be achieved in the required position with
good alignment, while the other 20% spreads into the adjacent
mode positions [7]. Increasing the unwrapped beam size may
appear to remedy the situation as it would increase the separa-
tion distance between the spots. This, however, also decreases
the phase gradient, resulting in the spot width to spacing ratio re-
maining similar [6]. Consequently, the overlap between modes
is an intrinsic property of the system. A solution was suggested
by Berkhout et al. [5], though, whereby the unwrapped beam
length may be increased through simply copying the unwrapped
modes and placing them next to each other.

As the linear gradient ranges in periods of 0 to 2π for every
OAM value, placing copies alongside the other does not disrupt
the unwrapped beam configuration, allowing this technique to
decrease the spot width without altering the spacing [6, 8]. The
copied beams then add an extra Nc rotations to this 0 to 2π
periodic gradient.

Further investigation and subsequent implementation was
then carried out by including two additional phase transforma-
tions on SLMs after the mode sorter optics [6, 8]. Here the first
transformation copied the phase-correction unwrapped beam
according to the phase term:

ϕFOE(x) = tan−1

 ∑N
m=−N γm sin(( 2πω

λ
)mx + αm)∑N

m=−N γm cos(( 2πω
λ

)mx + αm)

 (S12)

which resulted in Nc = 2N + 1 copies placed alongside each
other based on the angular separation, ω, in the x-direction,
causing the element to be labeled a fan-out element (FOE) [6].
γm and αm serve as phase and intensity parameters, respectively,
for the different orders (m). The second transformation subse-
quently served as a correction for this fan-out operation.

Ruffato et al. recently combined the log-polar coordinate
and fan-out functions as well as the respective phase corrections
to condense the operations into two diffractive elements [9].
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Fig S8. (a) OAM demultiplexing with log-pol optical
transformation without and with the integration of a 3-copy
optical fan-out. The generation of multiple copies increases the
spatial extent of the linear phase gradient and therefore reduces
the width of the final spots after Fourier transform with a lens.
(b) Sorting of OAM beams with log-pol optical transformation
in the traditional architecture with the two optical elements in
sequence: unwrapper (UW) and phase-corrector (PC). The
integration of a fan-out term producing multiple copies (fan-out
unwrapper UW+FO3, double phase-corrector PC3) increases
the OAM resolution.

Here the copying element was combined with the unwrapper
so that the beam could be simultaneously copied Nc times and
unwrapped alongside each other before encountering the second
element [10]. Subsequently, the correction terms for the path
length difference from the unwrapper is combined with the
corrections for joining the copied beams such that a dual and
once-off correction is carried out on the beam. It follows that
more accuracy should be expected with this method in addition
to the convenience of utilizing a more compact system, where
the alignment for the system is restricted to half the elements
given in the scheme implemented by Mirhosseini et al. [6].

The subsequent working principal behind the elements by
Ruffato et. al. is depicted in Fig. S8.

2.3.2 Mode sorter performance

To characterize the expected performance in detecting the QW,
analysis of both the refractive and diffractive mode sorting
elements used in the experiement was carried out. Table S3
gives the fabrication parameters of the tested sorters.

The tested diffractive sorters varied in the number of copies
that were created where 1 and 3 copies were generated respec-
tively. As the 1-copy and refractive sorter both generated a
single unwrapped beam, the expected difference in performance
between the sorters was limited to the range of OAM modes that
could be accurately sorted. This is due to the refractive sorter

Table S1. Comparison of design parameters for the
refractive and diffractive sorters.

Design Parameters Refractive
Sorter

Diffractive
Sorter

Element diameter (mm) 12.7 2.0
Incident beam radius (mm) ≤ 2.10 0.500–0.800
Design wavelength (nm) 633 632.8

Wavelength range, λ (nm) 400–
1000 532–732

Separation between ele-
ments (mm) 300.5 8.500

Unwrapped beam length, d
(mm) 10.5 1.12 (1–copy)

0.500
(3–copy)

Fig S9. Illustration of the sorting action of a MS (bottom row)
for a range of encoded OAM values (top row) between [-3,3].

being able to receive beams of lager radii, thus compensating for
the increased deviation of the angle of incidence for the beam
rays directed to the sorter as the OAM increases. A higher range
of the sorted OAM values being viably accurate [7] should thus
occur. As a result, evaluation of the refractive sorter was re-
stricted to the comparative OAM ranges while the 1- and 3-copy
sorters were further characterized, allowing a more accurate
comparison due to the parameter similarities.

Figure S9 experimentally illustrates the transformation per-
formed by the mode sorter on LG modes ranging from -3 to
3 OAM. Here the top row shows the modes generated by the
SLM and directed through the sorter. The OAM per photon is
given above the respective spatial modes. In the row below, the
elongated spots formed in the FP of the sorting lens are shown.
Cross-hairs in the images mark the position of the 0 OAM mode.
Consequently, the OAM dependent sorting power of the ele-
ments may be clearly seen where the negative OAM spots are
formed to the left of the cross-hairs and the positive OAM spots
to the right. Additionally, the position moves incrementally in
the OAM handedness direction, based on the OAM value.

2.3.3 Spot positions

Quantitative evaluation of the spot positions was carried out
whereby experimental measurement of the spots formed for
varying OAM was compared to calculated values determined
from Eq. S11. Anticipation of both the accuracy and consistency
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Fig S10. A comparison of measured (red) sorted spot positions
against that which was theoretically expected (blue) based on
the designed unraveled beam length, d for the (a) refractive, (b)
1-copy and (c) 3-copy mode sorter.

which may be expected for the modes detected with the elements
is thus possible. The expected function of the distance between
sorted modes relative to the OAM (l) then

tr =
λ f l
d
=

(633 nm)(500 mm)
(10.5mm)

l = (30.1l µm)

for the refractive sorter,

tr =
λ f l
d
=

(633 nm)(100 mm)
(1.12mm)

l = (59.6l µm)

for 1-copy diffractive sorter and

tr =
λ f l
d
=

(633 nm)(100 mm)
(0.5mm)

l = (126.6l µm)

for the 3-copy diffractive sorter.
Results are given in Fig. S10 where the positions detected

for the range of OAM values directed through the sorter are
plotted alongside the calculated functions determined above.

Here the positions were determined relative to the l = 0
mode. Based on the previous discussion on the viability of OAM
ranges, the measured OAM set was greater for the refractive
sorter with OAM = [-30,30], than the diffractive sorter with
OAM = [-15, 15].

Considering Fig. S10 (a), the experimental shift in spacing
agrees well with the calculated value obtained from the design
parameters with a difference of 30.1µm — 29.6µm = 0.5µm.
Additionally, the positions form a straight line as evidenced with
the high R2-value of 0.9995. This indicates a consistent posi-
tional shift which should lead to defined boundaries between
the experimentally formed OAM spots. As a result, the detected
intensities at those positions should be an accurate reflection of
the modes and weightings in the beams being sorted.

Based on the spacing calculations, the expected separation
distance for the 1-copy mode sorter was 59.6 µm compared

to the average experimental value of 62.5 µm in Fig. S10 (b).
This deviation is notable with a 62.5 µm — 59.6 µm = 2.9 µm
difference as it accumulates with the number of increased modes
as evidenced by in Fig S10 (b) for the higher OAM modes.
A straight line, however, is still formed by the experimental
shift in position with OAM. This may be explained by the
length of the unwrapped beam where it may have been slightly
shorter in the experimental implementation than the parameter
quoted. The performance of the 1-copy sorter shall thus be
evaluated with the experimental positional shift where adequate
performance may be expected with a similarly high R2-value
of 0.9994 compared to the refractive sorter. Accordingly, the
sorter performs adequately.

For the 3-copy mode sorter, comparison of the calculated
and measured values yielded a 126.9 µm — 126.6 µm = 0.3
µm difference, indicating excellent agreement. Additionally,
the R2-value of 1 gives rise to good expectations in terms of
detecting the correct OAM values.

2.3.4 Alignment range and cross-talk

By binning rectangular areas on the CCD along the direction
of the spot movement, the intensity was integrated over to de-
termine both the presence and weighting of different OAM
modes. Here the bin positions were determined by Eq. S11
with appropriate adjustment in the 1-copy case. Accordingly,
determination of the viable range of OAM modes for which the
MS may be used was achieved by binning for a range of OAM
modes across the CCD image captured of each generated mode.
OAM modes from -30 to 30 for the refractive sorter and -15 to
15 for the diffractive sorters were then sent separately through
the MS and the detected modes then read out. The results are
given in Fig. S11 for the different sorters.

Here the presence of cross-talk is indicated by the off-
diagonal elements. It may be seen that the minimum cross-talk
achievable was 25% for the most aligned spot detected (as
shown by the range of the color map) for both the refractive and
1-copy sorters in Fig S11 (a) and (b) respectively. It may also
be observed that near 0 OAM, the refractive sorter generated a
larger amount of cross-talk than in the diffractive mode sorter
elements for the best alignments that were achievable. Figure
S11 (c) yields the characteristic density plot for analysing the 3-
copy mode sorter. Here the minimum cross-talk achievable may
be seen as substantially reduced with only 10% being detected
in the incorrect modes.

Alteration of the strongest detected modes away from the
diagonal indicated the OAM mode detected is no longer cor-
rect. As a result, the viable sorting range may be established by
observing the number of modes where the maximum intensity
remains within the diagonal. It follows from the discussion on
the effect of the skew angle of the incident beam, that devia-
tion in detected modes is expected to occur as the OAM-value
increases. This should occur later in the refractive sorter case,
however. The deviation is observed as a decrease in intensity of
the diagonal values and a spreading in the off-diagonal terms
as the generated OAM values digress from the central 0 OAM
value.
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Fig S11. A density plot showing the sorting power and the
associated cross-talk that may be expected with acceptable
alignment for the (a) refractive, (b) 1-copy mode sorter and (c)
3-copy mode sorter.

In Fig. S11 (a), the range of modes for which correct OAM
modes are detected is [-20,20] with the refractive sorter. From
Fig. S11 (b), with the 1-copy sorter, about 15 modes fall within a
range of acceptable accuracy where the intensity that is detected
in the correct mode remains above 60%. A greater range may
still be used for the mode sorter, provided correction terms are
used for the non-existent modes being detected as well as loss
of weighting in the correctly detected modes. However, this is
also limited as past 20 modes, the defining spot disintegrates
into a fringe array for which the positions are not indicative of
the modes present.

The range of viable modes with detected weightings greater
than 60% for the correct mode increased to 23 in the 3-copy
case. Additionally, the spread of the cross-talk between modes
was reduced due to the additional number of unwrapped beams.
A stronger along-side diagonal may be seen, however, in com-
parison to Figure S11 (b). This may be attributed to the greater
misalignment between the elements as the sensitivity of the
element increased with the number of the beams copied. Sub-
sequently, additional fringes were caused directly adjacent to
the spot, yielding a stronger presence of erroneous detection of
adjacent OAM modes.

It follows that greater accuracy of the detected modes was
found with the diffractive sorters, however, the range of OAM
modes were diminished by the small radius of the element. As
a result, the refractive sorter remained consistent over almost
twice the OAM range in comparison to the diffractive elements,
illustrating this point for a beam size of 6 mm. Increasing the
incoming beam size will subsequently also increase the sorting
range.

2.3.5 Spot resolution

By superimposing sets of alternating OAM spots, the resolution
of adjacent spots were investigated. This was done for the 1-
copy sorter in Fig. S12 (a). Here superpositions of even and odd
OAM modes in the interval [-7,7] were separately sent through
the sorter and imaged. Superimposing these modes clearly
describes how the modes overlap (also seen shown with the 2D
profiles below the spots). A clear overlap may consequently be
seen which will lead to additional cross-talk for the detection of
OAM modes not present.

Fig S12. Images showing resolution for adjacent OAM modes
when sorted with (a) a 1-copy mode sorter with the alternating
odd and even modes between [-7,7] superimposed along with
their 2D profiles, (b) adjacent OAM modes between [-1,-8]
sorted by the 1-copy mode sorter and (c) adjacent OAM modes
between [-7,7] sorted by the 3-copy mode sorter.

Additionally, a set of adjacent modes where OAM = [-1,-8]
were sent through the mode sorter with the resulting distribution
shown in Fig. S12 (b). The convolution resulted in a distortion
of the intensity spectrum associated with the OAM present as
well as eliminating the ability to visually distinguish a spot’s
position. The latter may be evidenced through the appearance
of only 6 spot ‘tails’ at the bottom of the convolution when 8
OAM modes are present.

The 3-copy mode sorter, however, effectively separated and
defined the spots for adjected OAM modes as is illustrated for
Fig. S12 (c). Here a superposition of adjacent OAM modes
[-7,7] was generated the corresponding detected spots shown in
the figure. A 2D profile is shown below the spots, clearly illus-
trating the reduction in overlap and increased spot resolution.

2.3.6 Weighted detection

Accurate detection of mode weightings was also evaluated with
the results given in Fig. S13 (a) and (b) for 1- and 3-copy sorters
respectively. Here a distinct superposition of OAM modes were
multiplexed by the SLM and sent through the sorters.

Comparative accuracy of the multiplexed and detected OAM
modes was determined through its similarity as given by,

S =
[
∑

l
√

Wexp(l)Wth(l)]2∑
l Wexp(l)

∑
l Wth(l)

(S13)

where Wth(l) is the theoretical or multiplexed weighting associ-
ated with the OAM mode l and Wexp(l) is the detected equivalent
of the mode. Observation of the Fig. S13 (a) and (b) indicate
that the multiplexed and detected weightings resemble each
other, showing that either of the sorters would be suitable for
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Fig S13. Relative weightings evaluated for multiplexed OAM
modes sent through the mode sorter for the (a) 1-copy and (b)
3-copy mode sorters with respective similarities of S = 0.791
and S = 0.968.

detection, however, a significant increase in the accuracy of
modal detection occurs as the copy numbers increase. More
specifically, the similarity of 79.1% for the 1-copy is increased
by 22% when adding 2-copies.

Consequently, both the refractive and diffractive sorters ex-
hibited advantages and disadvantages associated with their im-
plementation. Specifically, the refractive mode sorter was more
robust, allowing a greater range of beam sizes to be easily sorted
as well as maintaining a larger range of OAM values when gen-
erating larger input beam sizes. The accuracy associated with
measuring the weightings associated with a 1-copy sorter, such
as the refractive one, however, is adversely affected with a
79.1% accuracy which may be expected if reasonable alignment
is achieved. Here, the 3-copy diffractive sorter is more advan-
tageous with a large increase in accuracy with fair alignment.
In addition, the cross-talk measured was substantially smaller
with a reduction in the power erroneously detected for incorrect
OAM modes. Implementation of this sorter resulted in a higher
sensitivity to misalignment, resulting in a more difficult detec-
tion system as well as a significant restriction of the size of the
beam that can be sorted. Furthermore, variation of beam sizes
that may be sorted is small as only a deviation of 0.300mm is
possible in comparison to the 8mm range achievable in the re-
fractive sorter case. Subsequently, for more robust requirements,
the refractive sorter was favorable at the expense of the system
accuracy; conversely, greater accuracy was achieved with the
3-copy diffractive sorter at the expense of the range and some
stability of the detection system.

3 Experimental considerations and
data analysis

3.1 Beam profile and spatial filtering
Elimination aberrations and unwanted modes contained in the
initially laser generated beam was necessary through construc-
tion of a spatial filter. Figure S14 (a) shows the transverse
output profile generated by the Spectraphysics DCR-11 laser.
From the transverse distribution, the presence of aberrations and
additional modes are evident in addition to a large beam width
of 3 mm. A spatial filter was implemented with a 50 µm pinhole
placed in the Fourier plane of the 4− f system with lenses of fo-
cal lengths, f 1 = 750 mm and f 2 = 200 mm respectively. Here

the pinhole was three times larger than the calculated Gaussian
beam width in the FP, resulting in the extraneous modes being
filtered out spatially. The focal length ratio ( f 2/ f 1) between
the lenses additionally formed a demagnification telescope to
reduce the beam diammeter to 2 mm.

Fig S14. False color map images of the near-field pulsed laser
output beam (a) before spatial filtering and (b) after spatial
filtering. The spatially filtered beam is smaller than the original
as it was de-magnified in the spatial filtering process.

The spatial filter output beam is given in Fig. S14 (b) where a
Gaussian intensity distribution can be seen along with the appro-
priate demagnification. In addition, the reduced size allowed for
a more sustainable walk with the dimensions remaining below
the size of the optics.

3.2 Pulse overlap and adjusting the prediction
The time gap (t) between each output pulse from the resonator
is related to the length of the resonator (L) through the rela-
tion, t = L/c where c refers to the speed of light in air and t
the time. Here, the resonator must be longer or equal to the
temporal pulse width to avoid overlap of the circulating pulse
and thus an overlap in the QW steps. However, experimental
consideration as well as stability and alignment factors resulted
in an upper limit restriction of 3 m for the resonator perime-
ter. It was subsequently designed in a 0.3m × 1.7m rectangular
configuration.

Measurement of the subsequent temporal pulse width of the
laser was carried out by placing a Thorlabs DET210-a photodi-
ode before the ICCD and averaging over 10 intensity pulses on
a Tektronix TDS2024B 1GHz oscilloscope. The corresponding
temporal parameters were then estimated by fitting the pulse to
a Gaussian function of the form:

G(x) = ae−(x−b)2/(2c2) + k, (S14)

where a determines the height of the pulse function, x refers to
the x-axis position which is then adjusted by b. c indicates the
width of the pulse and k adjusts the position along the y-axis.
The corresponding parameters extracted from fitting Eq. S14
are summarized in Table S2 A SSE (sum of the squares of the
error) of 0.002573 and R-squared value of 0.974 determined
from the fitting both indicate that the function as well as the
parameters are adequate reflections of the measured pulse for
the walker.
Here the parameters may subsequently be used to yield both
the mathematical description of the pulse as well as indicate
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Table S2. Parameters for Gaussian fit to average pulse
length measured from the Spectrophysics laser.

Parameter Fitted Value
a 0.06045
b 0.106 x 10−9

c 6.107 x 10−9

k 0.0040

the full-width half maximum (FWHM) and the full-width at
one-tenth maximum (FWTM) values for the pulse length.

The FWHM is then given by

FWHM = 2
√

2 ln (2) × c = 14.3ns

with the FWTM also determined by

FWT M = 2
√

2 ln (10) × c = 26.6ns

As the parameter b, indicates the position of the peak relative
to a position space, b = 0 allows the function to be centred at the
origin, making it easier to work with. Additionally, k indicates
the y-position which is also irrelevant, hence k = 0. It follows
that the intensity distribution of the pulse may be characterized
by the Gaussian function, G(t):

G(t) = 0.0605e−t2/(2(6.107ns)2) (S15)

Fig S15. Illustration of pulse overlap and intensity effects for
each pulse emitted from the resonator or step in the quantum
walk.

It follows that the FWHM is close to the 10 ns resonator
length with 14.3 ns. Comprehensive prediction of the mode
spectrum may be determined by considering the FWTM value,
however, which is almost 3 times larger than the 10 ns expected
for the resonator design, indicating a significant overlap. Cor-
rection for this was achieved by modelling of the OAM mode
spectrum overlap.

Two factors were considered in the experimental simulation
of the step distribution expected for each round trip. These
factors were (1) how the pulses overlap and (2) the intensity de-
crease occurring each RT due to the partial transmission through

the BS. More specifically, a FWTM of 30 ns and resonator
length of 10 ns,the output pulse will contain contributions from
the previous pulse as well as the next pulse. This is illustrated
in Fig. S15.

Fig S16. Adjusted diagram illustrating the pulse overlap for a 3
m = 10 ns resonator configuration where (a) the overlap is
emphasized and (b) the weighting effects associated with loss
in intensity incorporated.

As the measurements were taken every 10 ns for each re-
spective step, the overlap was minimized as indicated by the
blue dotted box. The second factor regarded the decrease in
the internal resonator intensity which lead to a difference in
the intensities of the overlapping components. Again, this is
illustrated in Fig S15. Subsequently, the correction factor for the
‘previous’ pulse overlap contribution was larger than that of the
‘future pulse’. A general formula for a transmission percentage
T and subsequent reflection, R = (1 − T ), of the pulse may
easily be derived. This is given in Eq. S16

w(n) =


0 i f n < 0
R i f n = 0

T 2Rn−1 i f n , 0
(S16)

The temporal shape of the pulse additionally affects the
overlap between the pulses. This was approximated by the best
fit curve for the average temporal pulse as determined in Eq.
S15. These intensity and temporal width factors were used to
augment the simulated QW.

An adjusted diagram of the pulse overlap is presented as Fig.
S16 (a) and (b) below. Figure S16 (a) indicates the extent of
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the pulse overlap while (b) illustrates the effects of the different
weightings for a 50 : 50 beamsplitter.

The dotted lines indicate the section of the pulse that was
gated by the AndOR camera for the nth step in the quantum
walk series. This gated section of the pulse was determined
using the formula:

a =
PW −GW

2
(S17)

where PW is the complete pulse width (40 ns based on the
modelled pulse) and GW is the gate width (i.e. the time section
of pulse captured).Based on the AndOR gating time, the pulse
was captured from

−PW
2
+ a = −20 + (

40 − 10
2

) = −5

to
PW
2
− a = 20 − (

40 − 10
2

) = 5.

Correction to the quantum walk probability distribution for the
1st pulse (n = 0) was thus:

n = 0:

[[QWP(0)]w(0)
∫ PW

2 −a

−PW
2 +a

G(t)dt]

+ [[QWP(1)]w(1)
∫ −PW

2 +a

−PW
2 +a−10

G(t)dt]

+ [[QWP(2)]w(2)
∫ −PW

2 +a−10

−PW
2 +a−20

G(t)dt]

Similarly, for n = 1 and 2:

n = 1:

[[QWP(0)]w(0)
∫ PW

2 −a+10

PW
2 −a

G(t)dt]

+ [[QWP(1)]w(1)
∫ PW

2 −a

−PW
2 +a

G(t)dt]

+ [[QWP(2)]w(2)
∫ −PW

2 +a

−PW
2 +a−10

G(t)dt]

+ [[QWP(3)]w(3)
∫ −PW

2 +a−10

−PW
2 +a−20

G(t)dt]

n = 2:

[[QWP(0)]w(0)
∫ PW

2 −a+20

PW
2 −a+10

G(t)dt]

+ [[QWP(1)]w(1)
∫ PW

2 −a+10

PW
2 −a

G(t)dt]

+ [[QWP(2)]w(2)
∫ PW

2 −a

−PW
2 +a

G(t)dt]

+ [[QWP(3)]w(3)
∫ −PW

2 +a

−PW
2 +a−10

G(t)dt]

+ [[QWP(4)]w(4)
∫ −PW

2 +a−10

−PW
2 +a−20

G(t)dt]

Accordingly, the following general model applies:

n:

[[QWP(n − 2)]w(n − 2)
∫ PW

2 −a+20

PW
2 −a+10

G(t)dt]

+ [[QWP(n − 1)]w(n − 1)
∫ PW

2 −a+10

PW
2 −a

G(t)dt]

[[QWP(n)]w(n)
∫ PW

2 −a

−PW
2 +a

G(t)dt]

+ [[QWP(n + 1)]w(n + 1)
∫ −PW

2 +a

−PW
2 +a−10

G(t)dt]

+ [[QWP(n + 2)]w(n + 2)
∫ −PW

2 +a−10

−PW
2 +a−20

G(t)dt] (S18)

Where QWP(n) is the quantum walk probability distribution of
the nth step. For comparison, Fig. S17 shows the normalized
expected and corrected Hadamard probability distributions for
the 6th pulse (n = 5). The corrected distribution displayed is for
the case of a 50 : 50 beam-splitter acting as the resonator output
window.

Fig S17. Step 5 of the OAM QW distribution with (Corr. QW)
and without (Calc. QW) the experimental corrections for step,
n = 5 or detected pulse 6.

Comparing the calculated distribution to that of the corrected
one, the same diverging trend is occurs. The maxima here
still appear near the edges of the distribution with the high-
est weightings occurring at the same positions. It follows that
the expected difference occurring from the overlapping modes
within the cavity is a broadening of the peaks as well as the pres-
ence of probabilities in the adjacent positions. Consequently, the
generated QW still retain the characteristic qualities associated
with the pure QWs.

3.3 Pulse synchronization and gating
An AndOR iStar ICCD camera (734 series) with a photocathode
optical shutter allowed gating times at the 10 ns scale and thus
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isolation of the correct round tip. The opening and closing of
the photocathode was determined by monitoring the electronic
signals, sent to enact the operation in the camera, with an oscil-
loscope. As indicated in Fig. S18, the opening is determined
with a negative pulse and closing with a positive pulse.

Fig S18. Schematic illustrating the procedure necessary to
correctly capture an output pulse for a single step or round trip
in the quantum walk.

The camera and laser pulse emission was synchronised with
a digital delay generator so as to locate the desired output pulse
(step). A specific time delay was then placed between the pulse
emission and opening of the photocathode. The delay chosen
was equivalent to the time taken for the electronic signals to
travel to the respective components as well as the time for the
pulse to reach the resonator, circulate the resonator a desired
number of times, travel through the sorter and reach the camera.
To determine the delay, a photodiode was placed at the same
distance from the output as the camera. Arrival of the pulse once
fired triggered the oscilloscope which was also monitoring the
photocathode trigger signal in a second channel. Adjustment of
the calculated time delay altered the first detected pulse (step 0)
temporal position as depicted in Fig. S19. After determination
of the initial pulse delay, isolation of the desired step or pulse
output was achieved by adding an additional delay of Nt that is
related to the resonator circulation time, t and number of steps,
N.

Determination of the appropriate delay required for synchro-
nization of the camera and laser pulse is demonstrated in Fig.
S19. The graphs along the lower row of the figure are signals
recorded by a oscilloscope monitoring the photocathode trig-
gering signals as well as the arrival of the emitted laser pulse
due to a trigger pulse from the digital delay generator for the
same nanosecond time scale (x-axis). The y-axis then represents
the associated voltages. It follows that the blue profile is the
laser pulse detected by the photodiode, placed the same distance
as the camera from the output pulse and the red profile is the
trigger signals operating the opening (first large dip) and closing
(first large spike) of the photocathode. Transparent green over-
lays on the respective graphs emphasize the period for which
the camera is recording the pulse intensity and thus the section
of the pulse captured. As indicated, the gate width (capturing

Fig S19. Experimental illustration of synchronization required
between the AndOR camera and pulsed laser for accurate
output pulse capture from the QW resonator. Delay time
settings were decreased from (a-d).

time) was set to 10 ns.
Images above each of the oscilloscope graphs are the trans-

verse intensity distributions captured in the respective 10 ns
gated windows where the delay between the photocathode and
laser triggers from the digital delay generator was systematically
decreased from (a) through to (b) for a three-lobe spatial profile.
It can thus be seen from (a)-(b) how the pulse moves into the
capturing window of the camera before the maximum pulse
intensity is captured in (c) and then moving past the range again
in (d). The variation in intensity of the captured modes clearly
show the synchronization effects of the time delay parameter
and the desired position for ideal analysis of an output pulse
with (c).

Application of the appropriate synchronization time delay
as determined with the method illustrated in Fig. S19 for the
first pulse in the resonator setup is allowed for the capture of the
desired QW step or output pulse. Subsequent addition of a step-
related time delay constant, Nt, to the initial delay allowed for
the capture of the intensity distribution related to that step (N) or
output pulse. This is illustrated in Fig. S20 for the experimental
setup. Here successive output pulse intensity distributions from
N = [0, 4] were captured with a 10 ns gate width in the mode
sorter Fourier plane. A clear evolution in the distribution may
be seen across the steps, indicating a spread in the intensity
distribution and thus the successful capture of additional output
pulses according to the associated delay settings. It follows that
this method would be effective in attaining the OAM spectra of
each QW step, allowing real-time observation of the walk.

3.4 Experimental data correction
Following the noted overlap occurring in the experimental setup
and the associated derivation of the correction to the theory,
the measured experimental results were expected to have an
adjusted distribution as indicted by Eq. S18. Accordingly, the
simulated distribution was altered as illustrated by Fig. S17.
Comparison between the directly measured experimental distri-
bution and altered theory thus allowed the QW distribution to
evaluated. The results in this form are shown by the gray bar
graphs (to the left) in Fig. S21 for the symmetric Hadamard
QW case, Fig. S22 for the asymmetric Hadamard QW, Fig. S23
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Fig S20. Example evolution of output intensity distributions as
captured every consecutive 10ns from the first output pulse,
marking each round trip made by the circulating light beam for
the QW resonator.

where the QW symmetry was changed with the QWP fast axis
orientation, Fig. S24 for the Identity coin QW and Fig. S25 for
the NOT-coin QW.

However, in order appropriately evaluate the QW distribu-
tions with respect to what is traditionally expected, it was also
possible to reverse the overlap and correct the measured distri-
bution such that it reflected the characteristic QW commonly
seen. This was accomplished by taking the QW distribution
measured for the nth step and applying the reverse of Eq. S18
such that the QWP(n)meas could be retrieved or de-convoluted
from the measured distribution.

To generate the experimental correction, consider simplify-
ing the equation by simplifying the terms specified in Table S3
by the variables listed.

Table S3. Equation S18 term simplification.
Variable Equation term
c(n−2) w(n − 2)

∫ PW
2 −a+20

PW
2 −a+10

G(t)dt]

c(n−1) w(n − 1)
∫ PW

2 −a+10
PW
2 −a

G(t)dt]

cn w(n)
∫ PW

2 −a
−PW

2 +a
G(t)dt]

c(n+1) w(n + 1)
∫ −PW

2 +a
−PW

2 +a−10
G(t)dt]

c(n+2) w(n + 2)
∫ −PW

2 +a−10
−PW

2 +a−20
G(t)dt]

Equation S18 then becomes

QWPCorr(n) =c(n−2)QWP(n − 2) + c(n−1)QWP(n − 1)
+ cnQWP(n) + c(n+1)QWP(n + 1)
+ c(n+2)QWP(n + 2), (S19)

where QWPCorr(n) is the probability distribution measured for
the nth step as a result of the overlapping pulses in the resonator.

Now in order to correlate the measured distribution to the
expected, they should both be normalized by dividing the dis-
tribution by the sum i.e. S =

∑
QWPCorr(n) and S Exp =∑

QWP(n)meas. Letting QWP(n)NORMmeas = QWP(n)meas/S Exp,
it follows that

QWP(n)NORMmeas =
[
c(n−2)QWP(n − 2) + c(n−1)QWP(n − 1)

+ cnQWP(n) + c(n+1)QWP(n + 1)

+ c(n+2)QWP(n + 2)]
]
÷ S . (S20)

As we are now modifying the experimentally measured data,
it follows that QWP(n) is becomes the corrected experimental
data. Subequently,

QWP(n)meas =
QWP(n)NORMmeas × S

cn
−[

c(n−2)QWP(n − 2) + c(n−1)QWP(n − 1)

+ c(n+1)QWP(n + 1) + c(n+2)QWP(n + 2)]
]
÷ cn.

(S21)

After applying the correction, any miscellaneous negative
values were taken as background errors and equated to 0 as a
negative probability is not physically possible. The resulting dis-
tributions were then normalized and are respectively presented
in the inset graphs to the right in Fig. S21 to Fig. S25. Here
the blue bars indicate the traditional distributions expected for
these types of QWs and no overlap adjustment is shown. This
may be clearly seen by where the uncorrected measured values
occupy adjacent OAM states or positions while the corrected
results shown occupy alternate OAM states or positions. The
double sided arrows in each case indicate the interchangeable
corrections between the simulated and measured probability
distributions and the subsequent matching correlations between
the experimental and simulated distributions.
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Fig S21. Illustration of the results presented in the paper for the symmetrical Hadamard QW with a simulated density plot indicating
the traditional spread in distribution with a logarithmic color scale over 100 steps. Inset graphs below indicate correlation of the
results where the theory was corrected for overlap (left) vs. where the experimental results were corrected for the overlapping pulses
(right). Black lines (color bars) indicate the experimental (simulated) results for (i) Step 1, (ii) Step 6 and (iii) Step 8. The dotted line
indicates the analogous Random walk distribution expected in the classical case for the last step.
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Fig S22. Illustration of the results presented in the paper for the asymmetrical Hadamard QW with a simulated density plot indicating
the traditional spread in distribution with a logarithmic color scale over 100 steps. Inset graphs below indicate correlation of the
results where the theory was corrected for overlap (left) vs. where the experimental results were corrected for the overlapping pulses
(right). Black lines (color bars) indicate the experimental (simulated) results for (i) Step 1, (ii) Step 4 and (iii) Step 5. The dotted line
indicates the analogous Random walk distribution expected in the classical case for the last step.
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Fig S23. Comparison of the change in QW symmetry presented in the paper for measured (black) and predicted distributions (bars)
with and without correction for pulse overlap. Here the 3D plot indicates the traditional predicted distribution (without overlapping
pulse correction) and the inset graphs show the alterations between correcting the theoretical distribution (gray) vs. correcting the
experimentally measured distribution (blue) for QWP coin fast axis orientations of (a) 45◦, (b) 90◦ and (c) 135◦
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Fig S24. Illustration of the results presented in the paper for the Identity coin QW with a simulated 3D plot indicating the traditional
spread in distribution (left) and adjusted spread (right) due to pulse overlap. Inset graphs below indicate correlation of the results
where the theory was corrected for overlap (left) vs. where the experimental results were corrected for the overlapping pulses (right).
Black lines (color bars) indicate the experimental (simulated) results for (i) Step 0, (ii) Step 3 and (iii) Step 4.
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Fig S25. Illustration of the results presented in the paper for the NOT-coin QW with a simulated 3D plot indicating the traditional
spread in distribution (left) and adjusted spread (right) due to pulse overlap. Inset graphs below indicate correlation of the results
where the theory was corrected for overlap (left) vs. where the experimental results were corrected for the overlapping pulses (right).
Black lines (color bars) indicate the experimental (simulated) results for (i) Step 0, (ii) Step 4 and (iii) Step 5.
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