Supplemental Experimental Procedures

1 Different models of growth

1.1 Growth proportional to surface area

We found that the radius r grows linearly with time t :

$$
\begin{equation*}
r(t)=a t \tag{1}
\end{equation*}
$$

where a is an arbitrary constant. It follows that

$$
\begin{equation*}
\frac{d r}{d t}=a \tag{2}
\end{equation*}
$$

Ultimately, we are interested in how the volume changes over time $\left(\frac{d V}{d t}\right)$ to be able to compare it with known growth models. We can calculate $\frac{d V}{d t}$ with the help of the known $\frac{d r}{d t}$ by:

$$
\begin{equation*}
\frac{d V}{d t}=\frac{d r}{d t} \frac{d V}{d r} \tag{3}
\end{equation*}
$$

The volume and the radius are related by the formula for the volume of a sphere $V=\frac{4}{3} \pi r^{3}$. Calculating the derivative of the volume with respect to the radius

$$
\begin{equation*}
\frac{d V}{d r}=4 \pi r^{2}=A \tag{4}
\end{equation*}
$$

results in the expression for the surface area A of a sphere. Using equations (2) and (4) in (3) leads to

$$
\begin{equation*}
\frac{d V}{d t}=a A \tag{5}
\end{equation*}
$$

This shows that if the radius grows linearly with time, the volume always grows proportionally to the surface area. Using the formulas for the surface area and the volume of a sphere, we see that plotting surface area over time would result in a quadratic curve, while the volume depends on time to the power of 3 .

1.2 Growth proportional to volume

For comparison, we briefly describe what growth proportional to the volume would look like. Growth proportional to volume means that

$$
\begin{equation*}
\frac{d V}{d t}=a V \tag{6}
\end{equation*}
$$

Solving this leads to

$$
\begin{equation*}
\log V=a t+C \tag{7}
\end{equation*}
$$

where C is an arbitrary constant. Using the formula for the volume of a sphere, we can express the volume as a function of the radius:

$$
\begin{equation*}
\log \left(\frac{4}{3} \pi r^{3}\right)=a t+C \tag{8}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\frac{4}{3} \pi r^{3}=e^{a t+C} \tag{9}
\end{equation*}
$$

Solving for r leads to

$$
\begin{equation*}
r(t)=\left(\frac{3}{4 \pi}\right)^{\frac{1}{3}} e^{\frac{1}{3}(a t+C)} \tag{10}
\end{equation*}
$$

This means that r would grow exponentially with time. The same is true for the surface area A and the volume (by using the expression for r in equation (10) in $A=4 \pi r^{2}, V=\frac{4}{3} \pi r^{3}$).

1.3 Constant growth

Another common model of growth is constant growth with respect to the volume, where

$$
\begin{equation*}
\frac{d V}{d t}=a \tag{11}
\end{equation*}
$$

Solving this leads to

$$
\begin{equation*}
V=a t+C \tag{12}
\end{equation*}
$$

Including the volume as a function of radius

$$
\begin{equation*}
\frac{4}{3} \pi r^{3}=a t+C \tag{13}
\end{equation*}
$$

leads to the following dependence of r on time t :

$$
\begin{equation*}
r(t)=\left(\frac{3(a t+C)}{4 \pi}\right)^{\frac{1}{3}} \tag{14}
\end{equation*}
$$

This shows that in case of constant growth with respect to the volume, the radius would grow proportional to $t^{\frac{1}{3}}$, the surface area proportional to $t^{\frac{2}{3}}$, and the volume (as the name of this model says) proportional to t.

