Appendix

The proof of Theorem proceeds by a series of lemmas.

Lemma 1 If the random indicator A_i that is conditional on $X_i = x_i$ is Bernoulli $(1 - \pi_0(x_i))$, then $E(\Psi(z_i; x_i) | X_i = x_i) = \pi_0(x_i)$.

Proof 1 We have

$$E(A_i|Z_i = z_i, X_i = x_i) = P(A_i = 1|Z_i = z_i, X_i = x_i) = 1 - \Psi(z_i; x_i).$$

By taking the expectation with respect to the density of Z_i that is conditional on $X_i = x_i$, we obtain

$$E(E(A_i|Z_i = z_i, X_i = x_i)|X_i = x_i) = E(1 - \Psi(z_i; x_i)|X_i = x_i),$$

$$E(A_i|X_i = x_i) = 1 - E(\Psi(z_i; x_i)|X_i = x_i),$$

and the result follows.

Lemma 2 For $x_i \in \mathcal{R}_1(x_0, \Delta_0)$, the bootstrap estimator $\widehat{\mu}(\Delta_0, B)$ is a weakly consistent estimator of π_{01} . That is,

$$\lim_{N \to \infty} \lim_{B \to \infty} P(|\widehat{\mu}(\Delta_0, B) - \pi_{01}| > \epsilon | X_i = x_i) = 0 \text{ for any } \epsilon > 0.$$

Proof 2 By Markov's inequality, it holds for any $\epsilon > 0$ that

$$P(|\hat{\mu}(\Delta_{0}, B) - \pi_{01}| > \epsilon | X_{i} = x_{i}) \leq \frac{E[|\hat{\mu}(\Delta_{0}, B) - \pi_{01}| | X_{i} = x_{i}]}{\epsilon}$$

$$\leq \frac{E[|\hat{\mu}(\Delta_{0}, B) - \mu_{\Delta_{0}}(x_{i})| | X_{i} = x_{i}]}{\epsilon}$$

$$+ \frac{E[|\mu_{\Delta_{0}}(x_{i}) - \pi_{01}| | X_{i} = x_{i}]}{\epsilon}.$$

 $\hat{\mu}(\Delta_0, B)$ is an unbiased estimator of $\mu_{\Delta_0}(x_i)$, and has zero variance as B becomes large. That is,

$$\lim_{B \to \infty} E\left[\left(\widehat{\mu}(\Delta_0, B) - \mu_{\Delta_0}(x_i)\right)^2 | X_i = x_i\right] = \lim_{B \to \infty} \frac{\sigma_{\Delta_0}^2(x_i)}{B} = 0.$$
(1)

Hence,

$$\lim_{B \to \infty} E[|\widehat{\mu}(\Delta_0, B) - \mu_{\Delta_0}(x_i)| | X_i = x_i] \le \lim_{B \to \infty} E[(\widehat{\mu}(\Delta_0, B) - \mu_{\Delta_0}(x_i))^2 | X_i = x_i]^{\frac{1}{2}} = 0.$$

On the other hand, when $x_i \in \mathcal{R}_1(x_0, \Delta_0)$ the expected dimension of the reference class $\mathbf{z}_i^{\Delta_0}$ as N becomes large is $\lim_{N\to\infty} d_i^{\Delta_0} = \infty$. By applying the consistency assumption of $\widehat{\Psi}_i$ on the reference class $\mathbf{z}_i^{\Delta_0}$, we have that

$$\lim_{N \to \infty} P(|\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta_0}) - \Psi(z_i; x_i)| > \epsilon | X_i = x_i) = 0.$$

Because $|\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta_0}) - \Psi(z_i; x_i)| \leq 1$, the dominated convergence Theorem implies that

$$\lim_{N \to \infty} E[\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta_0}) - \Psi(z_i; x_i) | X_i = x_i] = 0.$$

For $x_i \in \mathcal{R}_1(x_0, \Delta_0)$, $E(\Psi(z_i; x_i) | X_i = x_i) = \pi_{01}$ and

$$\lim_{N \to \infty} \frac{E[|\mu_{\Delta_0}(x_i) - \pi_{01}| | X_i = x_i]}{\epsilon} = 0.$$

Lemma 3 If $x_i \in \mathcal{R}_1(x_0, \Delta_0)$, then the bootstrap estimator $\widehat{\mathcal{B}}(\Delta, \Delta_0, B)$ is a weakly consistent estimator of the prediction bias $\mathcal{B}_{\Delta}(x_i)$. That is,

$$\lim_{N \to \infty} \lim_{B \to \infty} P(|\widehat{\mathcal{B}}(\Delta, \Delta_0, B) - \mathcal{B}_{\Delta}(x_i)| > \epsilon | X_i = x_i) = 0 \text{ for any } \epsilon > 0.$$

Proof 3 By Markov's inequality, we have for any $\epsilon > 0$ that

$$P(|\widehat{\mathcal{B}}(\Delta, \Delta_0, B) - \mathcal{B}_{\Delta}(x_i)| > \epsilon | X_i = x_i) \leq \frac{E[|\widehat{\mathcal{B}}(\Delta, \Delta_0, B) - \mathcal{B}_{\Delta}(x_i)| | X_i = x_i]}{\epsilon}$$
$$\leq \frac{E[|\widehat{\mu}(\Delta, B) - \mu_{\Delta}(x_i)| | X_i = x_i]}{\epsilon}$$
$$+ \frac{E[|\widehat{\mu}(\Delta_0, B) - \pi_{01}| | X_i = x_i]}{\epsilon}.$$

Because $\hat{\mu}(\Delta, B)$ is an unbiased estimator of $\mu_{\Delta}(x_i)$ whose variance is asymptotically zero, the result follows from Lemma 2 and the fact that

$$\lim_{B \to \infty} E[|\widehat{\mu}(\Delta, B) - \mu_{\Delta}(x_i)| | X_i = x_i] \le \lim_{B \to \infty} E[(\widehat{\mu}(\Delta, B) - \mu_{\Delta}(x_i))^2 | X_i = x_i]^{\frac{1}{2}} = 0.$$

Lemma 4 For $x_i \in \mathcal{R}_1(x_0, \Delta_0)$, the bootstrap estimator $\widehat{\Delta}_{0i}^{\star}$ is a weakly consistent estimator of Δ_{0i}^{\star} . That is,

$$\lim_{N \to \infty} \lim_{B \to \infty} P(|\widehat{\Delta}_{0i}^{\star} - \Delta_{0i}^{\star}| > \epsilon | X_i = x_i) = 0 \text{ for any } \epsilon > 0.$$

Proof 4 The bootstrap sample variance is a weakly consistent estimator of the variance of $\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta})$ and it follows from Lemma 3, that

$$\lim_{N \to \infty} \lim_{B \to \infty} P(|\widehat{err}(\Delta, \Delta_0, B) - err(\widehat{\Psi}(\boldsymbol{z}_i^{\Delta})|X_i = x_i)| > \epsilon |X_i = x_i) = 0.$$

Therefore, the result follows from the continuous mapping Theorem and the fact that

$$\lim_{N \to \infty} \lim_{B \to \infty} P(|\arg \inf_{\Delta \ge \Delta_0} \widehat{err}(\Delta, \Delta_0, B) - \arg \inf_{\Delta \ge \Delta_0} err(\widehat{\Psi}(\boldsymbol{z}_i^{\Delta}) | X_i = x_i)| > \epsilon | X_i = x_i) = 0.$$

Proof of Theorem:

Proof 5 We know that

$$MSE(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\widehat{\Delta}_{0i}^{\star}})|\mathcal{R}_{1}(x_{0},\Delta_{0})) = \int_{\mathcal{R}_{1}(x_{0},\Delta_{0})} MSE(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\widehat{\Delta}_{0i}^{\star}})|X_{i} = x_{i}) dP_{x_{i}},$$
$$MSE(\widehat{\Psi}_{i}(\boldsymbol{z})|\mathcal{R}_{1}(x_{0},\Delta_{0})) = \int_{\mathcal{R}_{1}(x_{0},\Delta_{0})} MSE(\widehat{\Psi}_{i}(\boldsymbol{z})|X_{i} = x_{i}) dP_{x_{i}}.$$

It suffices to show that

$$\lim_{N \to \infty} \lim_{B \to \infty} \left[MSE(\widehat{\Psi}_i(\boldsymbol{z}_i^{\widehat{\Delta}_{0i}^{\star}}) | X_i = x_i) - MSE(\widehat{\Psi}_i(\boldsymbol{z}) | X_i = x_i) \right] \le 0.$$

$$\begin{split} MSE(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\widehat{\Delta}_{0i}^{\star}})|X_{i} = x_{i}) - MSE(\widehat{\Psi}_{i}(\boldsymbol{z})|X_{i} = x_{i}) = err(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\widehat{\Delta}_{0i}^{\star}})|X_{i} = x_{i}) \\ - err(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\Delta_{0i}^{\star}})|X_{i} = x_{i}) \\ + err(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\Delta_{0i}^{\star}})|X_{i} = x_{i}) \\ - err(\widehat{\Psi}_{i}(\boldsymbol{z})|X_{i} = x_{i}). \end{split}$$

From Lemma 4, the weak consistency of $\widehat{\Delta}_{0i}^{\star}$ implies that

$$\lim_{N \to \infty} \lim_{B \to \infty} err(\widehat{\Psi}_i(\boldsymbol{z}_i^{\widehat{\Delta}_{0i}^{\star}}) | X_i = x_i) - err(\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta_{0i}^{\star}}) | X_i = x_i) = 0.$$

On the other hand, because Δ^{\star}_{0i} is optimal tuning parameter, it follows that

$$err(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\Delta_{0i}^{\star}})|X_{i}=x_{i})-err(\widehat{\Psi}_{i}(\boldsymbol{z})|X_{i}=x_{i}) \leq err(\widehat{\Psi}_{i}(\boldsymbol{z}_{i}^{\Delta})|X_{i}=x_{i})-err(\widehat{\Psi}_{i}(\boldsymbol{z})|X_{i}=x_{i})$$

for any $\Delta \in [\Delta_{0}, \infty)$, which indicates that

$$\begin{split} \lim_{N \to \infty} \lim_{B \to \infty} \left[MSE(\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta_{0i}^*}) | X_i = x_i) - MSE(\widehat{\Psi}_i(\boldsymbol{z}) | X_i = x_i) \right] \\ & \leq \lim_{N \to \infty} \lim_{B \to \infty} \left[err(\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta}) | X_i = x_i) - err(\widehat{\Psi}_i(\boldsymbol{z}) | X_i = x_i) \right] \\ & = \lim_{N \to \infty} \lim_{B \to \infty} \left[MSE(\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta}) | X_i = x_i) - MSE(\widehat{\Psi}_i(\boldsymbol{z}) | X_i = x_i) \right] = 0. \end{split}$$

The facts that both $\lim_{N\to\infty} MSE(\widehat{\Psi}_i(\boldsymbol{z})|X_i = x_i) = 0$ and $\lim_{N\to\infty} MSE(\widehat{\Psi}_i(\boldsymbol{z}_i^{\Delta})|X_i = x_i) = 0$ follow from the consistency and the dominated convergence Theorem.