
Appendix

The proof of Theorem proceeds by a series of lemmas.

Lemma 1 If the random indicator Ai that is conditional on Xi = xi is
Bernoulli

(
1− π0(xi)

)
, then E

(
Ψ(zi;xi)|Xi = xi

)
= π0(xi).

Proof 1 We have

E(Ai|Zi = zi, Xi = xi) = P(Ai = 1|Zi = zi, Xi = xi) = 1−Ψ(zi;xi).

By taking the expectation with respect to the density of Zi that is conditional on
Xi = xi, we obtain

E
(
E(Ai|Zi = zi, Xi = xi)|Xi = xi

)
=E
(
1−Ψ(zi;xi)|Xi = xi

)
,

E(Ai|Xi = xi) =1− E
(
Ψ(zi;xi)|Xi = xi

)
,

and the result follows.

Lemma 2 For xi ∈ R1(x0,∆0), the bootstrap estimator µ̂(∆0, B) is a weakly
consistent estimator of π01. That is,

lim
N→∞

lim
B→∞

P
(
|µ̂(∆0, B)− π01| > ε|Xi = xi

)
= 0 for any ε > 0.

Proof 2 By Markov’s inequality, it holds for any ε > 0 that

P
(
|µ̂(∆0, B)− π01| > ε|Xi = xi

)
≤
E
[
|µ̂(∆0, B)− π01|

∣∣Xi = xi
]

ε

≤
E
[
|µ̂(∆0, B)− µ∆0(xi)|

∣∣Xi = xi
]

ε

+
E
[
|µ∆0

(xi)− π01|
∣∣Xi = xi

]
ε

.

µ̂(∆0, B) is an unbiased estimator of µ∆0
(xi), and has zero variance as B becomes

large. That is,

lim
B→∞

E
[(
µ̂(∆0, B)− µ∆0

(xi)
)2|Xi = xi

]
= lim

B→∞

σ2
∆0

(xi)

B
= 0. (1)

Hence,

lim
B→∞

E
[
|µ̂(∆0, B)−µ∆0

(xi)|
∣∣Xi = xi

]
≤ lim

B→∞
E
[(
µ̂(∆0, B)−µ∆0

(xi)
)2|Xi = xi

] 1
2 = 0.

On the other hand, when xi ∈ R1(x0,∆0) the expected dimension of the reference class
z∆0
i as N becomes large is limN→∞ d∆0

i =∞. By applying the consistency assumption

of Ψ̂i on the reference class z∆0
i , we have that

lim
N→∞

P
(
|Ψ̂i(z

∆0
i )−Ψ(zi;xi)| > ε|Xi = xi

)
= 0.

Because |Ψ̂i(z
∆0
i )−Ψ(zi;xi)| ≤ 1, the dominated convergence Theorem implies that

lim
N→∞

E
[
Ψ̂i(z

∆0
i )−Ψ(zi;xi)|Xi = xi

]
= 0.
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For xi ∈ R1(x0,∆0), E
(
Ψ(zi;xi)|Xi = xi

)
= π01 and

lim
N→∞

E
[
|µ∆0

(xi)− π01|
∣∣Xi = xi

]
ε

= 0.

Lemma 3 If xi ∈ R1(x0,∆0), then the bootstrap estimator B̂(∆,∆0, B) is a weakly
consistent estimator of the prediction bias B∆(xi). That is,

lim
N→∞

lim
B→∞

P
(
|B̂(∆,∆0, B)− B∆(xi)| > ε|Xi = xi

)
= 0 for any ε > 0.

Proof 3 By Markov’s inequality, we have for any ε > 0 that

P
(
|B̂(∆,∆0, B)− B∆(xi)| > ε|Xi = xi

)
≤
E
[
|B̂(∆,∆0, B)− B∆(xi)|

∣∣Xi = xi
]

ε

≤
E
[
|µ̂(∆, B)− µ∆(xi)|

∣∣Xi = xi
]

ε

+
E
[
|µ̂(∆0, B)− π01|

∣∣Xi = xi
]

ε
.

Because µ̂(∆, B) is an unbiased estimator of µ∆(xi) whose variance is asymptotically
zero, the result follows from Lemma 2 and the fact that

lim
B→∞

E
[
|µ̂(∆, B)− µ∆(xi)|

∣∣Xi = xi
]
≤ lim

B→∞
E
[(
µ̂(∆, B)− µ∆(xi)

)2|Xi = xi
] 1

2 = 0.

Lemma 4 For xi ∈ R1(x0,∆0), the bootstrap estimator ∆̂?
0i is a weakly consistent

estimator of ∆?
0i. That is,

lim
N→∞

lim
B→∞

P
(
|∆̂?

0i −∆?
0i| > ε|Xi = xi

)
= 0 for any ε > 0.

Proof 4 The bootstrap sample variance is a weakly consistent estimator of the variance
of Ψ̂i(z

∆
i ) and it follows from Lemma 3, that

lim
N→∞

lim
B→∞

P
(
|êrr
(
∆,∆0, B

)
− err

(
Ψ̂(z∆

i )|Xi = xi
)
| > ε|Xi = xi

)
= 0.

Therefore, the result follows from the continuous mapping Theorem and the fact that

lim
N→∞

lim
B→∞

P
(
| arg inf

∆≥∆0

êrr
(
∆,∆0, B

)
−arg inf

∆≥∆0

err
(
Ψ̂(z∆

i )|Xi = xi
)
| > ε|Xi = xi

)
= 0.
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Proof of Theorem:

Proof 5 We know that

MSE
(
Ψ̂i(z

∆̂?
0i

i )|R1(x0,∆0)
)

=

∫
R1(x0,∆0)

MSE
(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)
dPxi

,

MSE
(
Ψ̂i(z)|R1(x0,∆0)

)
=

∫
R1(x0,∆0)

MSE
(
Ψ̂i(z)|Xi = xi

)
dPxi .

It suffices to show that

lim
N→∞

lim
B→∞

[
MSE

(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)
−MSE

(
Ψ̂i(z)|Xi = xi

)]
≤ 0.

MSE
(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)
−MSE

(
Ψ̂i(z)|Xi = xi

)
=err

(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)

−err
(
Ψ̂i(z

∆?
0i

i )|Xi = xi
)

+err
(
Ψ̂i(z

∆?
0i

i )|Xi = xi
)

−err
(
Ψ̂i(z)|Xi = xi

)
.

From Lemma 4, the weak consistency of ∆̂?
0i implies that

lim
N→∞

lim
B→∞

err
(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)
− err

(
Ψ̂i(z

∆?
0i

i )|Xi = xi
)

= 0.

On the other hand, because ∆?
0i is optimal tuning parameter, it follows that

err
(
Ψ̂i(z

∆?
0i

i )|Xi = xi
)
−err

(
Ψ̂i(z)|Xi = xi

)
≤ err

(
Ψ̂i(z

∆
i )|Xi = xi

)
−err

(
Ψ̂i(z)|Xi = xi

)
for any ∆ ∈ [∆0,∞), which indicates that

lim
N→∞

lim
B→∞

[
MSE

(
Ψ̂i(z

∆̂?
0i

i )|Xi = xi
)
−MSE

(
Ψ̂i(z)|Xi = xi

)]
≤ lim

N→∞
lim

B→∞

[
err
(
Ψ̂i(z

∆
i )|Xi = xi

)
−err

(
Ψ̂i(z)|Xi = xi

)]
= lim

N→∞
lim

B→∞

[
MSE

(
Ψ̂i(z

∆
i )|Xi = xi

)
−MSE

(
Ψ̂i(z)|Xi = xi

)]
= 0.

The facts that both limN→∞MSE
(
Ψ̂i(z)|Xi = xi

)
= 0 and

limN→∞MSE
(
Ψ̂i(z

∆
i )|Xi = xi

)
= 0 follow from the consistency and the dominated

convergence Theorem.
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