
S1 Appendix 900

Section 1 introduces parameter estimation, uncertainty quantification, how we define 901

the accuracy of mathematical models and the nonlinear mixed-effects analysis. 902

1 Mathematical Methods 903

Parameter Estimation 904

To personalise mathematical models we solved nonlinear least-squares problems of the 905

type 906

min
p,x

1

2

m∑
i=1

(ηi − xma(ti))
2

σ2
i

+ α ‖xpr(t0)−Bbm‖22 +

ntr∑
i=1

α ‖xtr,i(t0)−Bbm‖22 (19)

s.t. ẋ(t) = f(x(t), u(t), p), x(t0) = x0(p) (20)

with a vector p = (B, ktr, γ, slope, xpr(t0), xtr(t0), xma(t0)) of model parameters, 907

dynamics (1) given by a f(·) where we write xtr = (xtr,1, . . . , xtr,ntr
), initial conditions 908

x0(p) that are chosen according to I1 for M1–M3, I2 for M4, and I3 for M5–M12, and a 909

penalisation factor α = 1/2500 (note that the penalty terms vanish for strategies I1 and 910

I2 as the initial conditions are fixed to Bbm). The variances σi were chosen as 911

σi = 0.3 + 0.3ηi defining additive plus proportional residual variabilities with constant 912

variances [51]. This formula was chosen after trial and error with different scalings and 913

visual assessment of results, as we did not estimate the variances σi during the 914

individual parameter estimations. Among the candidates were also logarithmic 915

functions which are often used in the literature. The WBC count data vector η has m 916

entries and depends on the particular data from Study I used for personalisation. 917

The parameter estimation problems (19) were solved with a multiple shooting based 918

Gauß–Newton algorithm coded in the PAREMERA software and an adaptive, 919

error–controlled backward differentiation formulae (BDF) method for integration coded 920

in the software DAESOL, both included in the experimental design package 921

VPLAN [50] developed at the University of Heidelberg. The same integrator was used 922

for all individual predictions (simulations) in this paper. Note that the Gauß–Newton 923

algorithm, like all Newton-type algorithms, only converges to a local minimum. 924

Published parameter estimates served as starting values for the optimization problems. 925

We also tested different starting values with whom the parameter estimation problems 926

converged to the same minima. 927

Uncertainty Quantification 928

In Fig 3c–d we visualised uncertainty tubes of PMs by means of 1000 Monte Carlo 929

simulations to indicate the propagated probability density function. Each simulation 930

was performed with a set of parameters ps = (B, γ, ktr, slope, xpr(t0), xtr(t0), xma(t0)) 931

sampled from the multivariate normal distribution N7(p∗, C∗). The vector p∗ was the 932

nominal solution of (19) and C∗ the corresponding variance-covariance matrix provided 933

by the software package VPLAN. A detailed description of the computation of the 934

variance-covariance matrix C∗ can be found in [50]. 935
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Accuracy of mathematical models 936

InTable 3 we evaluated the accuracy of personalised mathematical models PMs using
the root mean squared error

RMSE =

√√√√ 1

m

m∑
i=1

(ηi − xma(ti))2 (21)

where xma(·) is part of the solution of the estimation problem (19). 937

Nonlinear mixed-effects modelling 938

To qualitatively confirm that the extensions in models M9, M10, and M12 cover 939

secondary effects of Ara-C we performed a nonlinear mixed-effects modelling approach 940

on the 42 consolidation cycles for the most relevant models M3 and M10 with initial 941

value condition I1. We were led by previously published NLME models for 942

myelosuppression, used optimisation algorithms and considered objective function 943

values (due to comparing nested models), plausibility of the parameter estimates, the 944

magnitude of their relative standard errors and the related parameter identifiability for 945

model development. A comparison between the results of the first-order conditional 946

estimation (FOCE) and the first-order (FO) method indicated that the set of population 947

parameter values from the FO method and only adapting dosing schemes with respect to 948

body surface area and age is not sufficient to provide high individual model accuracies. 949

The FO method resulted in high inter-individual variabilities for ktr, slope and γ and 950

the objective function value was 62.80 compared to -68.78 using the FOCE method. 951

Applying initial value approach I3 with prior knowledge in NONMEM resulted in 952

parameter estimates achieving 15% reduction of the objective value, but with the 953

drawback of high standard errors. Thus, we applied the steady state approach I1 for the 954

reason that our main focus is on predicting leukopenia. Finally, inter–individual 955

variability (IIV) was assumed to be log-normally distributed and residual variability was 956

estimated using a proportional error model. Parameter estimation was performed in 957

NONMEM (version 7.4, first-order conditional estimation method with interaction as 958

used in previous publications) in combination with PsN software (version 4.4.0; Uppsala 959

Pharmacometrics, Uppsala, Sweden). Data set preparation was performed in Python 960

(version 2.7.6) and analysis of the results was performed in R (version 3.4.4; R Project 961

for Statistical Computing, Vienna, Austria) including the xpose4 package (version 4.6.1) 962

for generating visual predictive checks. 963

To analyse the effect of the PK variability on the different modelling hypotheses, we 964

performed 500 simulations each using NONMEM for the nonlinear mixed-effects models 965

of M3 and M10 (with I1) applying schedules D123 and D135 with fixed population 966

parameter values for B, slope, ktr, and γ (see S4 Table) and inter-individual PK 967

variability on clearance and central volume. The population parameter values of the PK 968

model were derived from the naive pooling approach (19) and the inter-individual 969

variability was taken from [20]. A detailed description is given below of S8 Fig. 970
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