Proof: $\mathcal{I}(i) \in [0,1], \forall i$

Proposition 1 For any vector with elements in the unit interval, the mean is always greater than or equal to the variance.

Proof 1 Let $\mathbf{X} = \{x_1, \dots, x_n\}$ be a vector with: $x_k \in [0, 1], \forall k = 1, \dots, n$. If the mean $(\langle \mathbf{X} \rangle)$ is greater than or equal to the variance $(\langle \mathbf{X}^2 \rangle - \langle \mathbf{X} \rangle^2)$ it follows that:

 $\left< \mathbf{X} \right> + \left< \mathbf{X} \right>^2 \geq \left< \mathbf{X}^2 \right>$

The inequality always holds as all x values are in the unit interval $(x_k \in [0,1])$ and thus the square is always greater than or equal to the original value $(x_k \ge x_k^2, \forall k = 1, ..., n)$.