
A ChIP-seq pipeline for peak calling and processing knockout data

Peak intensity is a measure of binding affinity, and in terms of the narrowPeak and broadPeak output format of most

ChIP-seq peak callers, this could be the signal value (7th column), − log10(p-value) (8th column), or the − log10(q-value)

(9th column) of each line in the peak call file. The signal value is typically computed from the number of sequence reads

that originate from a bound genomic location. The p-value is computed from the signal value, which is a measure of

statistical significance of the peak call. The q-value of each peak call is computed by adjusting the p-value to control the

false discovery rate of the peak call set [10], which is a correction for multiple hypothesis testing. A peak call with a larger

signal value has a smaller p- and q-value, which indicates that it is more likely to reflect an actual protein-DNA binding

event. Thus, a larger signal value will translate to a larger − log10(p-value) and − log10(q-value). Across all datasets, we

refer to the signal value (6th column) as the peak intensity of that peak call.

A.1 ChIP-seq of FOXA1, HNF4A, and CEBPA from M. musculus liver:

We aligned the raw sequence reads (ArrayExpress, accession number: E-MTAB-1414) from the experiment [1] to the

2007 UCSC mm9 release of the C57/BL6 strain of the mouse genome, using the BWA (v0.7.12) aligner with default

settings [4]. We ran MACS2 (v2.1.0) [5], with its default settings, to call peaks on each of these alignments. Peaks were

called with a liberal p-value threshold of 10−3. Since the wild-type ChIP-seq data consisted of two biological replicates,

we pooled these aligned reads into a single file and called peaks using MACS2. We ran MACS2 with default settings,

which discards aligned reads that are PCR duplicates before calling peaks..

We then applied a second criterion to filter peak calls. The use of a relatively liberal p-value threshold of 10−3 while

calling peaks, and the pooling of aligned reads before calling peaks, was necessary in order to compute the irreproducible

discovery rate (IDR) [6, 7] of each peak. We computed the IDR of each peak with the idr script (v2.0) [6], and retained

peaks whose IDR was less than 1%. We then ranked peaks according to their MACS2 signal values, with the top ranked

peak having the largest signal value. We divided these ranks by the total number of peaks in the ChIP-seq profile to obtain

a normalized rank for each peak, which is equivalent to the quantile of that peak intensity within the profile. Significant

changes in these peak ranks were used to detect cooperative binding events while comparing peak calls between wild-type

and knockout ChIP-seq data.

Because the ChIP-seq of FOXA1 in ∆HNF4A and ∆CEBPA cells, HNF4A in ∆CEBPA cells, and CEBPA in ∆HNF4A

cells were not performed in replicates, we could not use the IDR criterion to filter peaks. Instead, for these, we filtered

peak calls using the q-value of each peak call as computed by MACS2. We retained only those peaks whose q-values were

less than 0.01 for further analysis. These peak calls were finally used to detect cooperative binding in FOXA1-HNF4A,

FOXA1-CEBPA, HNF4A-CEBPA and CEBPA-HNF4A pairs.

Since we filtered peak calls based on q-values in the other datasets we analyzed, we also created a separate set of

peak calls for the ChIP-seq of FOXA1, HNF4A and CEBPA (in wild-type cells), which were filtered according to their

q-values instead of their IDR values. This was to ensure that none of our results from this set of data were affected due

to IDR being employed to filter peak calls in wild-type cells and q-values being employed to filter peak calls in knockout

cells. To create this separate q-value based peak call set for FOXA1, CEBPA and HNF4A, we called peaks on the merged

alignments of FOXA1, CEBPA and HNF4A using MACS2 (v2.1.0) using a q-value threshold of 0.05.

A.2 ChIP-seq of GCN4, RTG3 in S. cerevisiae:

We aligned raw sequence reads [8] from the ChIP-seq libraries of GCN4, RTG3 (accession Number GSE60281) to the

S288C reference genome (R64-2-1) of S. cerevisiae, available at the Saccharomyces Genome Database [9].

We followed the same procedure as with the M. musculus data, with some changes. ChIP-seq reads from GCN4 and

RTG3 were available in three replicates. In these datasets, we merged the read alignments of all three replicates and
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called peaks on these combined alignments. We called peaks on this merged set using MACS2, with a p-value threshold

of 0.1, and retained peaks whose q-values were less than 0.1. MACS2 was run with the additional --nomodel --extsize

147 -g 1.21e7 options.

A.3 ChIP-seq of FIS and CRP in E. coli from early-exponential (EE) and mid-exponential

(ME) phase cultures:

For FIS and CRP ChIP-seq datasets, we utilized pre-computed peak calls that were available on the GEO database with

accession number GSE92255. Though the ChIP-seq experiments were carried out in replicates, these peaks were called

by running MACS2 on merged alignments of sequence reads from both replicates. The peak calls in this set were filtered

such that all peaks had a q-value less than 0.05.

In order to analyze whether these samples were sequenced to saturation, we had to call peaks on individual replicates.

We followed the same peak calling protocol for the individual replicates as was stated on the GEO database entry. We

used MACS2 (v2.0.1) in paired-end mode (-f BAMPE) to call peaks on the invidividual replicates, with those peak calls

whose q-value is less than 0.05 being retained. To call peaks on the merged replicates, we passed alignment files of both

individual ChIP and input replicates to the -t and -c options of MACS2 (v2.0.1).

We would like to highlight here that the pipeline used for calling peaks in the individual early-exponential (∆FIS)

CRP ChIP-seq replicates was slightly modified from those of the other datasets, where MACS2 was (v2.0.1) was run with

the additional options (--keep-dup ’all’). This was in line with the original study that reported this data, where PCR

duplicates were kept in the individual replicates because MACS2 reported no peaks in the second ChIP-seq replicate.

However, the peak calls for the merged replicates were called with the default PCR duplicate removal options for MACS2.

B Summary of ChIP-seq data analyzed
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Genotype ChIP TF Replicate # reads # aligned
reads

# unique
aligned reads

# peaks

∆CEBPA FOXA1 1 32,597,714 30,701,413 27,118,490 64,953

∆CEBPA HNF4A 1 27,398,895 26,079,513 23,383,347 69,075

∆CEBPA Input 1 40,186,137 39,232,917 35,379,794

∆HNF4A FOXA1 1 34,759,222 33,201,810 26,601,481 40,269

∆HNF4A Input 1 33,549,524 31,203,895 28,893,620

WT CEBPA 1 8,920,790 8,169,446 6,890,896 63,524

WT CEBPA 2 22,741,226 22,372,286 18,922,926 73,781

WT CEBPA Merged 31,662,016 30,541,732 25,223,529 85,095

WT FOXA1 1 20,036,435 17,243,099 14,020,357 90,136

WT FOXA1 2 22,693,631 22,332,782 19,149,183 95,507

WT FOXA1 Merged 42,730,066 39,575,881 31,915,168 115,023

WT HNF4A 1 17,406,988 16,626,822 12,672,074 109,973

WT HNF4A 2 23,428,817 22,667,764 17,226,195 104,777

WT HNF4A Merged 40,83,5805 39,294,586 27,411,711 128,858

WT Input 1 17,224,577 16,932,945 14,827,244

WT Input 2 23,620,903 23,324,876 21,239,295

WT Input Merged 40,845,480 40,257,821 35,879,535

Table A: Summary of number of reads and peak calls in each ChIP-seq replicate of FOXA1, HNF4A and CEBPA. As stated in A Section,
for FOXA1 (∆CEBPA), FOXA1 (∆HNF4A) and FOXA1 (∆HNF4A) datasets, only a single replicate of ChIP-seq was performed. The peak
calls for these data sets have a q-value less than 0.05. For the remaining datasets where ChIP-seq was performed in two replicates, the number
of peaks shown for each replicate are those whose p-value is less than 0.001. For the merged replicates, those peaks whose IDR values are less
than 0.01 are then retained for further analyses.
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Genotype ChIP TF Replicate # reads # aligned
reads

# unique
aligned reads

# peaks

∆CRP FIS 1 23,985,128 23,362,193 5,738,887 1,239

∆CRP Input 1 28,139,076 27,388,243 9,647,041

∆CRP FIS 2 13,108,872 11,173,807 3,621,603 1,079

∆CRP Input 2 16,455,832 16,013,138 12,482,398

∆CRP FIS Merged 37,094,000 34,536,000 9,313,430 1,321

∆CRP Input Merged 44,594,908 43,401,381 21,914,390

∆FIS CRP 1 32,920,738 31,313,012 11,823,828 995

∆FIS Input 1 24,519,138 24,017,307 12,327,642

∆FIS CRP 2 18,908,968 18,087,796 9,824,367 1,152

∆FIS Input 2 22,293,760 21,309,317 1,831,874

∆FIS CRP Merged 51,829,706 49,400,808 21,286,187 614

∆FIS Input Merged 46,812,898 45,326,624 14,153,427

WT CRP 1 19,698,248 18,916,551 5,209,510 1,373

WT Input 1 19,179,572 18,348,601 11,306,674

WT CRP 2 25,513,900 23,569,041 6,775,190 1,347

WT Input 2 26,487,432 24,506,386 8,768,154

WT CRP Merged 45,212,148 42,485,592 11,915,936 1,551

WT Input Merged 45,667,004 42,854,987 19,951,977

WT FIS 1 12,387,350 11,731,171 2,589,086 410

WT Input 1 20,109,602 19,328,277 2,137,289

WT FIS 2 10,176,622 9,836,656 1,169,305 807

WT Input 2 11,337,766 11,094,687 5,186,936

WT FIS Merged 22,563,972 21,567,827 3,752,888 594

WT Input Merged 31,447,368 30,422,964 7,316,641

Table B: Summary of number of paired-end reads in each ChIP and input samples of CRP and FIS for E. coli cells in the early exponential
(EE) growth phase.
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Genotype ChIP TF Replicate # reads # aligned
reads

# unique
aligned reads

# peaks

∆CRP FIS 1 17,124,050 16,491,466 7,438,622 1,387

∆CRP Input 1 36,771,916 35,945,565 32,201,951

∆CRP FIS 2 11,561,622 11,263,776 7,542,848 693

∆CRP Input 2 16,416,034 15,936,931 12,770,554

∆CRP FIS Merged 28,685,672 27,755,242 14,850,235 737

∆CRP Input Merged 53,187,950 51,882,496 44,222,579

∆FIS CRP 1 25,309,640 24,706,744 6,887,892 305

∆FIS Input 1 20,997,384 20,696,474 14,398,594

∆FIS CRP 2 27,433,692 26,177,465 11,004,142 313

∆FIS Input 2 20,319,816 19,563,144 18,529,135

∆FIS CRP Merged 52,743,332 50,884,209 17,801,841 175

∆FIS Input Merged 41,317,200 40,259,618 32,537,398

WT CRP 1 21,544,318 20,039,437 2,570,734 442

WT Input 1 14,314,998 13,239,455 2,127,070

WT CRP 2 8,777,264 8,327,033 967,632 387

WT Input 2 19,743,696 17,831,092 4,203,300

WT CRP Merged 30,321,582 28,366,470 3,537,937 578

WT Input Merged 34,058,694 31,070,547 6,328,296

WT FIS 1 18,113,890 17,658,051 1,355,076 1,367

WT Input 1 14,344,636 14,038,616 7,880,300

WT FIS 2 11,837,996 11,586,429 5,538,472 1,451

WT Input 2 16,098,716 15,885,657 6,515,651

WT FIS Merged 29,951,886 29,244,480 6,885,629 1,545

WT Input Merged 30,443,352 29,924,273 14,324,522

Table C: Summary of number of reads in each ChIP and input samples of CRP and FIS for E. coli cells in the mid-exponential (ME) growth
phase.
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Genotype ChIP TF Replicate # reads # aligned
reads

# unique
aligned reads

# peaks

∆GCN4 RTG3 1 8,235,710 2,612,756 1,962,795 934

∆GCN4 Input 1 5,900,814 5,536,176 3,697,208

∆GCN4 RTG3 2 7,542,821 5,544,101 4,008,363 1,028

∆GCN4 Input 2 5,813,106 5,509,474 4,041,401

∆GCN4 RTG3 3 7,463,361 4,443,591 2,951,557 1,911

∆GCN4 Input 3 5,456,967 4,970,647 3,324,457

∆GCN4 RTG3 Merged 23,241,892 12,600,448 7,510,405 1,083

∆GCN4 Input Merged 17,170,887 16,016,297 8,748,603

∆RTG3 GCN4 1 5,909,379 399,292 367,937 3,574

∆RTG3 Input 1 4,242,803 3,817,565 2,592,976

∆RTG3 GCN4 2 5,378,351 3,949,729 2,951,575 2,907

∆RTG3 Input 2 3,803,482 3,446,105 2,396,890

∆RTG3 GCN4 3 7,424,526 3,446,601 2,456,501 4,260

∆RTG3 Input 3 4,333,487 3,819,966 2,651,921

∆RTG3 GCN4 Merged 18,712,256 7,795,622 5,072,285 4,463

∆RTG3 Input Merged 12,379,772 11,083,636 6,355,054

WT GCN4 1 6,273,651 3,390,654 2,368,027 4,336

WT Input 1 4,785,870 4,267,874 2,725,285

WT GCN4 2 4,074,996 2,772,747 2,171,662 3,909

WT Input 2 3,173,721 2,857,929 2,010,610

WT GCN4 3 8,668,159 6,150,987 4,174,531 3,716

WT Input 3 3,901,564 3,493,325 2,365,151

WT GCN4 Merged 19,016,806 12,314,388 7,236,323 5,165

WT Input Merged 11,861,155 10,619,128 5,949,413

WT RTG3 1 7,062,903 3,086,243 2,065,954 4,272

WT Input 1 4,079,500 3,699,735 2619074

WT RTG3 2 5,568,366 3,350,249 2,469,440 2,850

WT Input 2 4,962,298 4,531,299 3,170,068

WT RTG3 3 6,628,678 2,278,979 1,691,413 3,659

WT Input 3 2,999,374 2,762,809 2,079,424

WT RTG3 Merged 19,259,947 8,715,471 5,400,260 4,206

WT Input Merged 12,041,172 10,993,843 6,715,409

Table D: Summary of number of reads and peaks in each ChIP and input samples of GCN4 and RTG3. The number of peaks shown in
the table for each replicate (and the merged alignments) are those whose p-values are less than 0.1. The final peaks that were used for the
remaining analyses were called on the merged alignments, and had a q-value less than 0.1. See A Section for details on how the replicates were
chosen.
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Data set ndouble

(npeaks, f)
Losses Increases Decreases Unchanged Cooperative

FOXA1-HNF4A 19858/30428
(0.65)

7224/9606
(0.75)

1025/2178
(0.47)

1469/1933
(0.76)

10140/16711
(0.61)

8249/19858

FOXA1-CEBPA 12063/30428
(0.4)

1281/2358
(0.54)

452/1846
(0.24)

877/1589
(0.55)

9453/24635
(0.38)

1733/12063

HNF4A-CEBPA 13730/39955
(0.34)

1667/4219
(0.4)

644/2546
(0.25)

896/1831
(0.49)

10523/31359
(0.34)

2311/13730

(EE) CRP-FIS 487/594
(0.82)

36/70 (0.51) — — 451/524
(0.86)

36/487

(EE) FIS-CRP 293/1545
(0.19)

140/935
(0.15)

— — 153/610
(0.25)

140/293

(ME) CRP-FIS 460/1551
(0.3)

176/1050
(0.17)

— — 284/501
(0.57)

176/460

GCN4-RTG3 2282/4497
(0.51)

533/1672
(0.32)

— — 1749/2825
(0.62)

533/1672

RTG3-GCN4 2051/3143
(0.65)

1527/2489
(0.61)

— — 524/654 (0.8) 1527/2489

Table E: Summary of ChIP-seq data from datasets analyzed in Figure 2. The second column describes the total number of doubly bound
regions in each dataset. In parentheses, the total number of target TF peaks, and the fraction of target TF peak regions that are doubly bound
are shown (f = ndouble/npeaks). The remaining columns list the number of target TF peaks that were lost, increased in rank, decreased in
rank, or unchanged in rank, from genomic regions bound by both target and partner TFs. The numbers in parentheses are the number of
target TF peaks that were lost, increased in rank, decreased in rank, or unchanged in rank, from all genomic regions bound by the target TF.
The last column is the total fraction of cooperatively bound peaks in each dataset. Statistical tests to detect significant peak rank changes
could be carried out only in FOXA1-HNF4A, FOXA1-CEBPA and HNF4A-CEBPA datasets (see A1 and A3 sections).

Data set ndouble

(npeaks, f)
Losses Increases Decreases Unchanged

FOXA1-HNF4A 6199/10651
(0.58)

1528/2342 (0.65) 347/856 (0.41) 563/759 (0.74) 3761/6694 (0.56)

FOXA1-CEBPA 3827/10651
(0.36)

236/541 (0.44) 158/684 (0.23) 303/554 (0.55) 3130/8872 (0.35)

HNF4A-CEBPA 6991/22650
(0.31)

515/1837 (0.28) 330/1473 (0.22) 513/1097 (0.47) 5633/18243
(0.31)

(EE) CRP-FIS 219/264 (0.83) 4/4 (1.0) — — 215/260 (0.83)

(EE) FIS-CRP 131/836 (0.16) 46/437 (0.11) — — 85/399 (0.21)

(ME) CRP-FIS 264/585 (0.45) 87/328 (0.27) — — 177/257 (0.69)

GCN4-RTG3 380/797 (0.48) 38/125 (0.3) — — 342/672 (0.51)

RTG3-GCN4 200/277 (0.72) 128/191 (0.67) — — 72/86 (0.84)

Table F: Summary of ChIP-seq data from datasets analyzed in Figure I after indirectly bound peaks have been removed. The second column
describes the total number of doubly bound regions in each dataset. In parentheses, the total number of target TF peaks, and the fraction of
target TF peak regions that are doubly bound are shown (f = ndouble/npeaks). The remaining columns list the number of target TF peaks
that were lost, increased in rank, decreased in rank, or unchanged in rank, from genomic regions bound by both target and partner TFs. The
numbers in parentheses are the number of target TF peaks that were lost, increased in rank, decreased in rank, or unchanged in rank, from all
genomic regions bound by the target TF. Statistical tests to detect significant peak rank changes could be carried out only in FOXA1-HNF4A,
FOXA1-CEBPA and HNF4A-CEBPA datasets (see A1 and A3 sections).
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C Estimation of average mappability of M. musculus, S. cerevisiae and

E. coli genomes

The single-end reads in the M. musculus data we employed was 36 bp in length. We downloaded mappability data for

the mm9 mouse genome assembly for 36 bp reads from the UCSC genome browser mm9 download section, which was

in the bigWig format. We converted this into a bedgraph file using the bigWigToBedGraph program (version dated 03

April 2018).

For E. coli and S. cerevisiae genomes, we created mappability files in the wiggle format using the program GEM

(v2.5.2.1) [25]. We used GEM to compute the mappability of 42 bp long reads in the S. cerevisiae genome and 101 bp long

reads in the E. coli genome using the gem-indexer. These were the read lengths employed in the original studies from

which we sourced the ChIP-seq data. The sequence of commands used to create the S. cerevisiae genome mappability

data for 42 bp reads were —

gem-indexer -T 4 -c dna -i genome.yeast.fasta -o genome.yeast.index

gem-mappability -T 8 -I genome.yeast.gem -l 42 -o genome.yeast_42

gem-2-wig -I genome.yeast.gem -i genome.yeast_42.mappability -o genome.yeast_42

wig2bed < genome.yeast_42.wig > genome.yeast_42.bedgraph

The commands used to create the E. coli genome mappability data for 101 bp reads were —

gem-indexer -T 4 -c dna -i genome.ecoli.fasta -o genome.ecoli.index

gem-mappability -T 8 -I genome.ecoli.gem -l 101 -o genome.ecoli_101

gem-2-wig -I genome.ecoli.gem -i genome.ecoli_101.mappability -o genome.ecoli_101

wig2bed < genome.ecoli_101.wig > genome.ecoli_101.bedgraph

We note that this E. coli mappability track was created assuming that the reads were single-end reads. Given that the

data we used employed paired-end reads, the mappability of these regions are higher in practice than that calculated by

gem. The wig2bed program (v2.4.32) was part of the BEDOPS suite [26].

From these mappability tracks, we followed the procedure outlined in [24] to compute the mappability of ChIP-seq

peaks. For a peak of length L base pairs in length, if the mappability score of a M base pair read at each of the L

positions is m1,m2, . . . ,mL, then, the average mappability of the peak is computed as m̄ =
∑L

i=1 mi/L. This calculation

was performed for all peaks in each peak call file using the map program (with options -o mean -c 4, where the 4th

column of the bedgraph is the mappability score) of the BEDTools suite (v2.25.0).

D Intensities of trimmed peaks of cooperatively bound target TFs are

weaker than those of non-cooperatively bound target TFs

Since we constructed target and partner TF peak pair sets by choosing those peak pairs whose peak regions overlapped

by at least one base pair, we checked if our results were an artefact of this overlap criterion. When we trimmed all

ChIP-seq peaks across datasets to 50 base pairs on either side of their summits, we still found cooperatively bound target

TF peaks to be more weakly bound than non-cooperatively bound target TF peaks ( D Fig). However, this trend was

no longer statistically significant in S. cerevisiae and E. coli datasets. However, the fact that the notches of the boxplots

are larger than the 25− th and 75− th percentiles of the peak intensity distributions indicates that the number of peaks

available in these datasets is small. Thus, the lack of statistical significance of the trends in intensities of these datasets

is likely a signature of the small number of peaks.
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E Performance of different variants of the CPI-EM algorithm

When CPI-EM was run to compute cooperative binding probabilities in the main text, Lognormal shapes were fitted to

the joint probability function of observing cooperative and non-cooperatively bound peak intensity pairs (step 2 of the

CPI-EM algorithm). In Figure L, we compare the detection performance of this version of the CPI-EM algorithm with

two other variants that fit Gamma and Gaussian shapes instead of a Lognormal shape. Figure L shows the auROC of

these three variants of the CPI-EM algorithm after they were run on all the datasets shown in Figure 1 in the main

text. We also compared the auROC of these CPI-EM variants to the peak distance detector, which is described in the

Materials and Methods of the main text, and a detector based purely on chance. The chance detector is based on using

tosses from a biased coin, whose probability of showing heads is α, to detect cooperative interactions. The area under

the ROC of this detector will be 0.5 for any dataset (see J Section). An auROC of 0.5 thus represents the minimum level

of detection performance that an algorithm should obtain to be considered a useful detector in practice.

In Figure L, it can be seen that the Log-normal CPI-EM variant has an auROC of at least 0.7, and thus can consistently

detect cooperative interactions across all datasets. The Gamma and Gaussian variants, on the other hand, perform close

to the level of the chance detector in FOXA1-CEBPA, HNF4A-CEBPA and early-exponential phase CRP-FIS datasets.

There is considerable variation in the auROC of the peak distance based algorithm: less than 0.5 in early-exponential

phase FIS-CRP and RTG3-GCN4 datasets, but higher than 0.5 in the remaining datasets. The fact that this algorithm

can perform worse than a chance detector shows that peak distance, by itself, is an unreliable criterion for detecting

cooperative binding. The complete ROC curves of each of the CPI-EM and peak distance algorithms for the datasets in

Figure 1 are shown in Figure P.

We checked if the performance of CPI-EM was dependent on instances of indirect binding between target and partner

TF peaks and the size of the ChIP-seq peaks input to it. We found that removing indirectly bound peaks of target

and partner TFs (Figure QA) did not noticeably alter the auROCs of any of the CPI-EM variants, with the log-normal

CPI-EM variant continuing to perform better than chance across all datasets. When we trimmed the peaks of both

TFs to within 50 base pair on either side of the peak summits before passing them as inputs to CPI-EM, there was no

noticeable drop in the auROCs of any of the CPI-EM variants, except in the case of the mid-exponential phase CRP-FIS

dataset. The auROC of the log-normal CPI-EM variant (Figure QB) on this dataset dropped below 0.5.

F Analyzing the extent of saturation of sequencing depth for ChIP-seq

datasets

To determine the extent to which the ChIP and input samples were sequenced, we called peaks on ChIP and input samples

after sub-sampling 20%,40%,60% and 80% of reads from each file. In samples that have been sequenced to saturation, a

small change in the number of reads should not result in a change in the number of peaks called.

We sub-sampled reads from the BAM alignments using the samtools view -bs program. This was done by passing

values of the form xy.f to the −s flag, where xy was a integer sampled uniformly between 0 and 99, and f was either

2,4,6 or 8, which corresponded to sampling 20,40,60 or 80% of the reads. We ran this command three times for each

ChIP and input BAM alignment pair, thus generating three replicates for each sub-sampling fraction. We called peaks

on each matched pair of sub-sampled ChIP and input BAM files using the appropriate pipelines described in A Section.

The results of this analysis are shown in K Fig.
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G Detecting significant rank changes of target TF peaks after the partner

TF is knocked out

To determine if a change in the peak rank of X upon the knocking out of Y is statistically significant, we construct a

null distribution that captures the magnitude of rank changes of X expected purely due to variability in the ChIP-seq

protocol. Suppose r
(1)
1 , r

(1)
2 , . . . , r

(1)
n and r

(2)
1 , r

(2)
2 , . . . , r

(2)
n represent the normalized ranks (whose values are between 0

and 1) of n overlapping peaks in biological replicates 1 and 2 of the ChIP-seq of X (in the presence of Y). We then

divide the interval [0, 1] into 10 equally sized bins (we verified that changing the number of bins did not drastically

change the results), and compute the null rank change probability density gknull(x) of the k − th bin from the samples

Sk = {|r(1)1 − r
(2)
1 |, |r(1)2 − r

(2)
2 |, . . . , |r(1)l − r

(2)
l |}, where each of {r(1)i }ni=1 falls in the kth bin. X Gaussian kernel density

estimator implemented in the Scipy library was used to compute gknull(x) for each bin. This represents the probability

of observing a rank change purely due to inter-replicate variation, conditioned on the bin to which the peak’s rank in

replicate 1 belongs. The process of computing rank changes separately within each bin better captured the skew expected

in rank changes arising from replicate variation. For instance, a peak of X, whose rank in replicate 1 is low, is far more

likely to have a higher rank in replicate 2, than a peak with a high rank in replicate 1.

We then proceed to compute the significance of rank changes observed in peaks of X after Y has been knocked out. For

this, we computed the ranks r
(m)
1 , r

(m)
2 , . . . , r

(m)
q from peaks of X that have been called from merging the read alignments

of replicates 1 and 2. The average change in peak rank due to the merging of alignments was close to zero, i.e., the ranks

r
(m)
1 , r

(m)
2 , . . . , r

(m)
p , did not change on average compared to r

(1)
1 , r

(1)
2 , . . . , r

(1)
p and r

(2)
1 , r

(2)
2 , . . . , r

(2)
p (data not shown),

where p is the number of peaks common between peak calls in the replicates and merged alignments. We also compute

the ranks r∆1 , r∆2 , . . . , r∆q of peak calls from the ChIP-seq of X after Y is knocked out. We then construct the set of rank

changes {|r(m)
1 − r∆1 |, (|r(m)

2 − r∆2 |), . . . , |r(m)
q − r∆q |}. For each rank change, we calculate pi = gknull(|r

(m)
i − r∆i |), where

k is the bin into which r
(m)
i falls. This is the probability of observing a rank change of magnitude |r(m)

i − r∆i | purely
due to inter-replicate variation, given that r

(m)
i belongs to the k − th bin. We finally obtain a sequence of probabilities

p1, p2, . . . , pq corresponding to each rank change observed upon knocking out Y.

We then conduct q one-sided hypothesis tests, each of which test the null hypothesis Hi : |r(m)
i − r∆i | = 0. We carry

out the hypothesis tests by checking if each pi < α, where α is chosen according to the Benjamini-Hochberg multiple

hypothesis testing procedure [10] that sets the false discovery rate at 0.01. Statistics on the number of significant peak

rank changes we observed in different datasets are shown in Table E.

We used this procedure to detect significant rank changes in FOXA1-HNF4A, FOXA1-CEBPA, and HNF4A-CEBPA

datasets only. This was because (a) the ChIP-seq of FOXA1, HNF4A and CEBPA were carried out in replicates, and (b)

the number of peaks that remained after IDR-based filtering was large. This gave us a sufficient number of peaks with

which to reliably compute the null rank change distribution. This was not the case in the RTG3-GCN4 and GCN4-RTG3

datasets, where the number of ChIP-seq peaks in the merged alignments (89 in RTG3-GCN4 and 343 in GCN4-RTG3

datasets) was small. We could not detect rank changes in the CRP-FIS and FIS-CRP datasets because peak calls from

individual replicates were not available, and hence, the null rank change distributions could not be computed.

H CPI-EM : Estimating parameters required to compute the probability

of cooperative binding at a location

The input to the CPI-EM algorithm consists of a set of peak intensity pairs D = {(xi, yi)}Ni=1, where {xi} and {yi} are

peak intensities of the target TF X and partner TF Y. We assume that the joint probability density of peak intensities

from all these regions, p(x, y), is a mixture (i.e., a sum) of two densities representing cooperative and non-cooperative

peak intensity distributions:

p(x, y) = π0p0(x, y;θ0) + π1p1(x, y;θ1), (1)
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where p0 and p1 are the joint densities of peak intensities from non-cooperatively and cooperatively bound regions,

respectively. θ0 and θ1 represent the parameters of both joint distributions. As shown in the main text, we make three

assumptions in the CPI-EM algorithm, which we describe and justify in detail below –

• Assumption 1 : We assume that p0(x, y;θ0) = pX0 (x;θX
0 )pY0 (y;θ

Y
0 ) and p1(x, y;θ1) = pX1 (x;θX

0 )pY1 (y;θ
Y
1 ), where

pX0 ,pY0 are marginal distributions of p0(x, y) and pX1 ,pY1 (y) are marginal distributions of p1(x, y). The parameter

vectors of the joint and marginal distributions are related as θ0 = (θX
0 ,θY

0 ) and θ1 = (θX
1 ,θY

1 ). This assumption

reduces equation (1) to

p(x, y) = π0p
X
0 (x;θX

0 )pY0 (y;θ
Y
0 ) + π1p

X
1 (x;θX

1 )pY1 (y;θ
Y
1 ). (2)

We found this to be a reasonable assumption across all our data sets when we calculated the mutual information (MI)

[13] between peak intensities of cooperatively and non-cooperatively bound peak pairs, as determined by partner TF

knockouts, across all our data sets (Table G). Mutual information, measured in bits, is a robust measure of statistical

dependence between two random variables, whose value is zero if the variables are statistically independent [12].

(I) Peak Intensity–Peak Intensity (II) Motif Score–Motif Score

Data set (a) All pairs (b) Coop
pairs

(c) Non-coop
pairs

(a) All pairs (b) Coop
pairs

(c) Non-coop
pairs

FOXA1-HNF4A

Full data 0.02 0.02 0.04 0.02 0.03 0.04

Indirect removed 0.05 0.03 0.07 0.03 0.02 0.10

FOXA1-CEBPA

Full data 0.03 0.02 0.04 0.03 0.02 0.04

Indirect removed 0.06 0.04 0.06 0.02 -0.07 0.02

HNF4A-CEBPA

Full data 0.03 0.04 0.03 0.03 0.03 0.03

Indirect removed 0.05 0.03 0.05 0.04 0.15 0.04

(EE) CRP-FIS

Full data 0.05 -0.02 0.05 0.05 -0.02 0.05

Indirect removed 0.06 0.08 0.05 -0.03 0.12 0.02

(ME) CRP-FIS

Full data 0.02 0.04 0.03 0.01 0.04 0.02

Indirect removed -0.05 — — -0.08 — —

GCN4-RTG3

Full data 0.05 -0.01 0.045 0.006 0.00 0.10

Indirect removed — — — — — —

Table G: A summary of the MI values estimated between pairs of peak intensities on the one hand and motif scores from the
sequences underlying these peaks. We computed the MI separately for cooperatively, non-cooperatively and all doubly bound regions.
The MI between target and partner TF peak intensities from both cooperatively and non-cooperatively bound regions are close to zero across
all data sets. This is the case even after indirectly bound peaks are removed or if the MI is computed between motif score pairs instead of
peak intensity pairs. MI is a non-negative quantity but the estimator we employ can give negative estimates of MI if the true MI in the data
is low or if the number of peak pairs available is low. In cases where the number of peak pairs was far too low (typically, < 20), the MI could
not be estimated and we have displayed these values as “—”.
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• Assumption 2 : We choose pX0 , pY0 , p
X
1 , pY1 to be either a Lognormal, Gamma or Gaussian density function, whose

expressions and corresponding parameter sets are –

Lognormal: p(x;m,σ) =
e−(ln(x)/m)2/2(σ)2

xσ
√
2π

x ≥ 0;m,σ > 0 θ = (m,σ),

Gamma: p(x; γ, β) =
( xβ )

γ−1 exp (− x
β )

βΓ(γ)
x ≥ 0; γ, β > 0 θ = (β, γ),

Gaussian: p(x;µ, σ) =
exp

(

−(x− µ)2/2σ2
)

σ
√
2π

σ > 0 θ = (µ, σ).

(3)

Across most datasets, we found that the Lognormal distribution tended to best fit peak intensity distributions. This

could be seen in terms of the log-likelihood scores obtained from fitting the three distributions individually to peak

intensities of target and partner TFs from cooperatively and non-cooperatively bound regions. The log-likelihood

score obtained from fitting these distributions to a set of peak intensities of a given TF is computed as

log (P (Z|Θ)) =

N
∑

i=1

log (p(zi;Θ))

where p is either the cooperative (p1) or non-cooperative (p0) density. Z is {xi}Ni=1 or {yi}Ni=1, which are target or

partner TF peak intensities, respectively. Θ are parameters of the distribution chosen for p. A larger log-likelihood

value indicates a better fit to data.

We computed Θ for each distribution using maximum likelihood estimates of these parameters. We used fit

routines of the stats library of the Python package SciPy [11] to compute these estimates. The log-likelihood

values calculated for each of the three distributions across all ChIP-seq datasets is shown in Table H.

Dataset

Target TF

Cooperative (pX1 (x)) Non-cooperative (pX0 (x))

Lognormal Gamma Gaussian Lognormal Gamma Gaussian

FOXA1-HNF4A −37367 −37694 −39881 −148661 −150528 −164422

FOXA1-CEBPA −7413 −7497 −8032 −125906 −125971 −134171

HNF4A-CEBPA −10360 −10419 −10968 −145841 −144745 −149395

(EE) FIS-CRP −82 −81 −88 −1756 −4064 −2063

(EE) CRP-FIS −567 −565 −576 −1145 −1144 −1150

(ME) FIS-CRP −455 −457 −518 −620 −619 −645

GCN4-RTG3 286 287 239 290 300 45

RTG3-GCN4 1203 1221 945 193 198 124

Dataset

Partner TF

Cooperative (pY1 (y)) Non-cooperative (pY0 (y))

Lognormal Gamma Gaussian Lognormal Gamma Gaussian

FOXA1-HNF4A −46926 −46736 −47168 −162580 −162688 −170887

FOXA1-CEBPA −9556 −9546 −9793 −123278 −123870 −132830

HNF4A-CEBPA −11709 −11710 −12085 −128582 −129452 −139457

(EE) FIS-CRP −124 −114 −128 −1640 −1636 −1661

(EE) CRP-FIS −656 −1329 −801 −1199 −2699 −1402

(ME) FIS-CRP −546 −542 −642 −621 −1127 −713

GCN4-RTG3 424 196 334 956 36 673

RTG3-GCN4 459 −214 169 49 56 −11

Table H: Log-likelihood values obtained from fitting log-normal, Gaussian and Gamma distributions to cooperative and non-cooperative peak
intensities of the datasets shown in Table E. The maximum log-likelihood values are indicated in bold. Across most datasets, the log-normal
distribution typically provides the best fit to peak intensity distributions.

• Assumption 3 : A cooperatively bound target TF is, on average, more weakly bound than a non-cooperatively

bound target TF. This implies that
〈

pX1 (x)
〉

<
〈

pX0 (x)
〉

. We found this to be a reasonable assumption since in Figure
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2 in the main text, cooperatively bound target TF peak intensities were significantly lower than non-cooperatively

bound target TF peak intensities across all datasets.

From equation (3) each of θ
X
0 ,θX

1 ,θY
0 ,θ

Y
1 consist of two parameters, irrespective of whether p1 is a Lognormal,

Gamma or Gaussian density function. Along with π0, there are thus a total of 9 parameters that we need to estimate

from D in order to compute the probability of each peak intensity pair in D being cooperative –

pcoopi ≡ P (Li = 1|xi, yi) =
π1p1(xi, yi;θ1)

π1p1(xi, yi;θ0) + π0p0(xi, yi;θ0).
(4)

=
π1p

X
1 (xi;θ

X
1 )pY1 (yi;θ

Y
1 )

π0pX0 (xi;θ
X
0 )pY0 (yi;θ

Y
0 ) + π1pX1 (xi;θ

X
1 )pY1 (yi;θ

Y
1 )

. (5)

H.1 The expectation-maximization (EM) algorithm

We use the expectation-maximization (EM) algorithm [14, 15] to estimate the parameters in equations (5) and (2). The

output of the EM algorithm is a single set of parameters Θ = (π0,θ
X
0 ,θY

0 ,θ
X
1 ,θY

1 ) that maximizes the log-likelihood

logP (D,L|Θ), where D represents the peak intensity pairs {(xi, yi)}Ni=1 and L = (L1, L2, . . . , LN ) are labels assigned to

each of the N locations, where Li = 1 represents cooperative binding and Li = 0 represents non-cooperative binding.

The expectation-maximization algorithm [14, 15] does this by computing a function Q(Θ,Θ′), which is the expected

value of the log-likelihood logP (D,L|Θ), given an earlier estimate of Θ = Θ′ [16]:

Q(Θ,Θ′) =
∑

L∈S

log
(

P (D,L|Θ)
)

P (L|D,Θ′), (6)

where S represents the set of all possible values of L.

Briefly, the EM algorithm starts with an initial guess Θ(0), and computes a value Θ(1) such that Q(Θ,Θ(0)) is

maximized with respect to Θ, where Θ(0) is kept constant. EM then computes Θ(2) in the next iteration to maximize

Q(Θ,Θ(1)) with respect to Θ, where Θ(1) is kept constant. This iteration increases the value of Q, i.e., Q(Θ(2),Θ(1)) >

Q(Θ(1),Θ(0). Thus, one run of the EM procedure generates a sequence of values Θ(0),Θ(1),Θ(2), . . . ,Θ(n) which can be

proven [14] to satisfy Q(Θ(1),Θ(0)) ≤ Q(Θ(2),Θ(1)) ≤ . . . Q(Θ(n),Θ(n−1)). EM terminates, say, at the n− th iteration,

when Q converges to a local maximum. This local maximum is guaranteed to be a local maximum of logP (D,L|Θ) [16].

Θ(n) is then substituted in equation (5) to compute the probability of each peak intensity pair being labeled cooperative.

We now describe the Q function employed in CPI-EM, and the implementation of the EM iteration process in detail

below.

The set S of all possible labels L in equation (6) consists of 2N elements because each element of L takes on values

of either 0 or 1. This is a very large number of terms that need to be added to evaluate Q. However, Q simplifies to a

sum over N terms for our model of cooperative binding. Q can be rewritten as

Q(Θ,Θ′) =
∑

L∈S

log
(

P (D,L|Θ)
)

P (L|D,Θ′) =
∑

L∈S

log
(

P (L|D,Θ)P (D|Θ)
)

P (L|D,Θ′) (7)

Since a peak intensity pair is either cooperative or non-cooperative, we can write P (Xi = xi, Yi = yi) = π0p0(xi, yi;θ0)+

π1p1(xi, yi;θ1), where π0 + π1 = 1. Since we consider (Xi, Yi) and (Xj , Yj) (i 6= j) to be statistically independent,

logP (D|Θ) =

N
∑

i=1

log

(

π0p
X
0 (xi;θ

X
0 )pY0 (yi;θ

Y
0 ) + π1p

X
1 (xi;θ

X
1 )pY1 (yi;θ

Y
1 )

)
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P (L|D,Θ) in equation (7) can be expanded as –

P (L|D,Θ) =

N
∏

i=1

P (Li = li|D,Θ)

=
N
∏

i=1

πlipli(xi, yi;θli)

π0p0(xi, yi;θ0) + π1p1(xi, yi;θ1)
,

where li is 0 or 1. Substituting the above two expansions into the expression for Q in equation (7), it can be shown that

Q simplifies to the form shown below, where it is a sum over only N terms (page 4 in [16])

Q(Θ,Θ′) =
N
∑

i=1

2
∑

l=1

log(πl)P (Li = l|xi, yi,Θ
′) +

N
∑

i=1

2
∑

l=1

P
(

Li = l|xi, yi,Θ
)

log
(

pXl (xi;θ
X′

l )pYl (yi;θ
Y ′

l )
)

= Q1(Θ
′) +Q2(Θ,Θ′), (8)

where, Θ′ = (π′

0,θ
X′

0 ,θY ′

0 ,θX′

1 ,θY ′

1 ). Note that the first term is independent of Θ′, so it can be maximized independently

of the second term. The choice of πl that maximizes the first term (page 5 in [16]) is –

πl =
1

N

N
∑

i=1

P (Li = l|xi, yi,Θ
′) for l = 0, 1.

The k − th EM iteration involves choosing a value Θ = Θ(k+1) that maximizes Q(Θ,Θ(k)), where Θ(k) is kept fixed

at the value obtained in the previous EM iteration that maximizes Q(Θ,Θ(k−1)). EM involves two steps, an E-step and

an M-step, which are both needed to maximize Q(Θ,Θ(k)). The E- and M- steps evaluated at the i− th iteration in our

algorithm are [17] –

• E-step : Compute

P (Li = l|xi, yi,Θ
(k)) =

πl
(k)pl(xi, yi;Θ

(k))

π0
(k)p0(xi, yi;Θ

(k)) + π1
(k)p1(xi, yi;Θ

(k))
for l = 0, 1; i = 1, 2, . . . , N.

• M-step (1) : Compute

π
(k+1)
l =

N
∑

i=1

P (Li = l|xi, yi,Θ
(k)) for l = 0, 1

This step maximizes Q1 in equation (8).

• M-step (2) : Use Powell’s gradient search method, as implemented in the Scipy optimization toolbox [18] to find

Θ(k+1) that maximizes Q2(Θ,Θ(k)) in equation (8), with Θ(k) = (π
(k)
0 ,θ

X,(k)
0 ,θ

Y,(k)
0 ,θ

X,(k)
1 ,θ

Y,(k)
1 ) kept constant –

Q2(Θ,Θ(k)) =
N
∑

i=1

2
∑

l=1

P
(

Li = l|xi, yi,Θ
)

log
(

pXl (xi;θ
X,(k)
l )pYl (yi;θ

Y,(k)
l )

)

We terminate the EM algorithm after n iterations if

|Q(Θ(n),Θ(n−1))−Q(Θ(n−1),Θ(n−2))|
|Q(Θ(n−1),Θ(n−2))|

< 10−6.

We choose the initial value Θ(0) as follows. From the data {(xi, yi)}Ni=1, we separate the peak intensities of X and Y

as DX = {xi}Ni=1 and DY = {yi}Ni=1. We then compute the value θX
mle that maximizes the likelihood

∏N
i=1 p(xi;θ), where

f is a Lognormal, Gamma or Gaussian density function. Similarly, we also compute the value of θY
mle that maximizes

the likelihood
∏N

i=1 p(yi;θ). These maximum likelihood estimates θ
X
mle and θ

Y
mle are computed using the fit function
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provided by the Python Scipy stats library, which can provide maximum likelihood estimates when p0 and p1 are either

Lognormal, Gamma or Gaussian density functions. We choose π
(0)
0 from a Uniform[0, 1] distribution. We finally set our

initial parameter vector Θ(0) to (π
(0)
0 , θXmle, θ

Y
mle, θ

X
mle, θ

Y
mle). We verified that EM converged to the same local maximum

when Θ(0) was perturbed by up to 30% around this choice (data not shown).

I Calculation of receiver operating characteristic (ROC) curves

CPI-EM : Given probability of cooperative binding pcoop1 , pcoop2 , . . . , pcoopN , the ROC curve was calculated by picking

thresholds α on these probabilities that corresponded to false positive rates between 0.1 and 1 in steps of 0.1. The true

positive rate at each of these thresholds was then computed. The area under the ROC curve was then calculated using

the trapezoidal integration rule available in the Python numpy library. This procedure was repeated for each of the three

variants of the CPI-EM algorithm. Similarly, the ROC curve of the peak distance algorithm was computed by choosing

thresholds on the peak distance that corresponded to false positive rates between 0.1 and 1 in steps of 0.1. After the true

positive rate at each threshold was calculated, the area under the ROC was computed with the trapezoidal integration

rule.

STAP : Given the STAP cooperative indices at each location in the test dataset ∆1,∆2, . . . ,∆n (see Materials and

Methods in main text for how these indices are calculated), we declare those locations where ∆ exceeds a threshold T

as cooperatively bound. To compute the ROC, we choose values of T that correspond to false positive rates between

0.1 and 1 in steps of 0.1, and compute the true positive rate at each of these values. The area under the ROC is finally

computed using the trapezoidal integration rule in a manner identical to that employed for computing the area under

ROC of CPI-EM.

J Area under ROC of a chance detector is 0.5

The chance detector is based purely on using tosses from a biased coin to detect cooperative interactions. Let the

probability of the coin showing heads be α. Out of a set of N peak intensity pairs {(xi, yi)}, suppose there are Nc and

Nnc cooperatively and non-cooperatively bound pairs, respectively. The number of false positives, resulting from N tosses

of the coin, would be Nncα, while the number of true positives would be Ncα. This means that both the FPR and TPR

of the chance detector would be α. Thus, as α is varied between 0 and 1, the ROC of the chance detector will be the

straight line FPR = TPR = α, which encloses an area of 0.5.

We checked if the performance of CPI-EM was dependent on instances of indirect binding between target and partner

TF peaks and the size of the ChIP-seq peaks input to it. We found that removing indirectly bound peaks of target and

partner TFs (QA Fig) did not noticeably alter the auROCs of any of the CPI-EM variants, with the log-normal CPI-EM

variant continuing to perform better than chance across all datasets. When we trimmed the peaks of both TFs to within

50 base pair on either side of the peak summits before passing them as inputs to CPI-EM, there was no noticeable drop

in the auROCs of any of the CPI-EM variants, except in the case of the mid-exponential phase CRP-FIS dataset. The

auROC of the log-normal CPI-EM variant (QB Fig) on this dataset dropped below 0.5.
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K Calculation of precision-recall curves

Precision-recall curves provide an alternate method to determining the performance of a detection algorithm. Using the

terminology introduced in the main text, the precision (P ) and recall R of an algorithm is

P =
NTP

NTP +NFP
,

R =
NTP

NTP +NFN
,

where, NTP is the number of true positives, NFP is the number of false positives and NFN is the number of false negatives

(i.e. the number of cooperatively bound peaks that are erroneously declared as non-cooperatively bound). As stated

in the main text, these quantities are dependent on the detection threshold employed in the algorithm. Changing the

threshold over a range gives a series of precision and recall values, with the area under the precision-recall curve (referred

to as the average precision), providing a measure of detection performance.

We computed the average precision and precision-recall curves of both CPI-EM and STAP (N Fig) using the

average precision score and precision recall curve routines from the scikit-learn library (v0.19.1) [27]. For

the precision-recall curve of CPI-EM, we passed the probabilities of cooperative binding pcoop1 , pcoop2 , . . . , pcoopN as inputs

to these two routines. In the case of STAP, we passed the cooperative indices ∆1,∆2, . . . ,∆n to compute its precision-

recall curve.

L Estimation of mutual information

Given a probability distribution p(x, y) over the set of peak intensity pairs {(xi, yi)}Ni=1, mutual information (MI) is

calculated as

MI =
n
∑

i=1

n
∑

i=1

p(xi, yi) log2

(

p(xi, yi)

pX(xi)pY (yi)

)

,

where pX(y) and pY (y) are the marginal distributions of p(x, y), and n is the number of {(xi, yi)} pairs. MI is a non-

negative quantity whose value is zero if X and Y are statistically independent i.e. if p(x, y) = pX(x)pY (y). From

the knockout data available for each of the TF pairs, we separated the peak intensity pairs {(xi, yi}Ni=1 into a set of

cooperatively bound peak intensity pairs Ac = {(xj , yj)} and a set of non-cooperatively bound peak intensity pairs

Anc = {(xk, yk)}. We separately computed the MI of peak intensity pairs in Ac (setting p = p1 in equation (L)) and Anc

(setting p = p0 in equation (L)) in each ChIP-seq knockout dataset we analyzed (Table G).

Estimating mutual information (MI) through direct use of the definition specified by equation (L) leads to many

problems; such MI estimates can be biased, or go to infinity in the case of certain distributions [13]. We estimated

MI using the LNC algorithm implemented in [13] that circumvents these issues. The drawback of the LNC algo-

rithm was that it gave non-negative estimates of MI only when a sufficient number of data points (in our case, at

least 20 peak pairs) were present and if the true value of MI is not too low [13] . We were thus unable to reli-

ably estimate MI in some of the ChIP-seq datasets we analyzed. The code for the LNC algorithm is available at

https://github.com/BiuBiuBiLL/NPEET_LNC/blob/master/lnc.py

Our finding that the mutual information between target and partner TF peak intensities is low, irrespective of whether

they are cooperatively or non-cooperatively bound (Table G) reflects only on the low statistical dependence between both

distribution of peak intensities. Importantly, this does not necessarily contradict our other finding that target TF peaks

are more weakly bound when that are cooperatively bound, in comparison to regions where they are not cooperatively

bound. The example below demonstrates that both these findings can be consistent with each other —

Suppose A and B are target and partner TFs, and the intensities of A and B are either 1 or 2, with “1” representing

weak binding and “2” representing strong binding. Our statement that target TFs are more weakly bound when they
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Case I : When B cooperatively binds DNA with A.

B = 1 B = 2

A = 1 0.18 0.42 P(A = 1) = 0.6

A = 2 0.12 0.28 P(A = 2) = 0.4

P(B = 1) = 0.3 P(B = 2) = 0.7

Case II : When B does not cooperatively bind DNA with A.

B = 1 B = 2

A = 1 0.1 0.1 P(A = 1) = 0.2

A = 2 0.4 0.4 P(A = 2) = 0.8

P(B = 1) = 0.5 P(B = 2) = 0.5

Table I: Probabilities of observing peak intensities of A and B in regions where (I) B cooperatively binds DNA with A, and (II) B does not
cooperatively bind DNA with A

are cooperatively bound with B, when compared to regions where they are not cooperatively bound can be written as

P (A = 1|B cooperatively binds DNA with A) > P (A = 1|B does not cooperatively binds DNA with A).

Two sets of probabilities that satisfy this statement are shown in Table I, where each cell represents the probability of

observing a given peak intensity for A and B. For example, in sub-table I of Table I, the entry in the first row, first

column states that P (A = 1 and B = 1|B cooperatively binds DNA) = 0.18. From the margins of both tables, we see

that

P (A = 1) = 0.6, P (A = 2) = 0.4 (when B cooperatively binds DNA with A )

P (A = 1) = 0.2, P (A = 2) = 0.8 (when B does not cooperatively bind DNA with A)

and

P (B = 1) = 0.3, P (B = 2) = 0.7 (when B cooperatively binds DNA with A)

P (B = 1) = 0.5, P (B = 2) = 0.5 (when B does not cooperatively bind DNA with A)

Thus, the statement that A is more likely to be weakly bound when it is cooperatively bound with B is satisfied.

The statement about mutual information being low shows that the peak intensities of A and B are statistically

independent. In our example, the mutual information between peak intensities of A and B is computed as

MI = P (A = 1 and B = 1|E) log2

(

P (A = 1 and B = 1|E)

P (A = 1|E)× P (B = 1|E)

)

+ P (A = 1 and B = 2|E) log2

(

P (A = 1 and B = 2|E)

P (A = 1|E)× P (B = 2|E)

)

+ P (A = 2 and B = 1|E) log2

(

P (A = 2 and B = 1|E)

P (A = 2|E)× P (B = 1|E)

)

+ P (A = 2 and B = 2|E) log2

(

P (A = 2 and B = 2|E)

P (A = 2|E)× P (B = 2|E)

)

,

where E refers to the distribution corresponding to the values in sub-tables I or II in Table I. It can be seen that the MI

will be zero if the ratios within the logarithms are equal to 1, that is —

P (A = i and B = j |E) = P (A = i |E)× P (B = j |E), (9)

where i and j are either 1 or 2. The values chosen in Table I are such that the equalities in equation (9) will always hold.
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We demonstrate this below for the case when A = 2 and B = 1, and both A and B cooperatively bind DNA.

P (A = 2 |B cooperatively binds with A)× P (B = 1 |B cooperatively binds with A)

= 0.8× 0.5

= 0.4

= P (A = 2 and B = 1|B cooperatively binds with A).

Thus, in this example, we can see that the MI between the peak intensities of A and B is zero, and at the same time,

A is more weakly bound when it is cooperatively bound with B when compared to regions where A is not cooperatively

bound.

In more intuitive terms, that a target TF tended to be more weakly bound when it cooperatively bound DNA, means

that we are more likely to find the target TF peak intensity to be low if we are told that it is cooperatively bound by

the partner TF. While it is true that a target TF should have a higher affinity to DNA when cooperatively binding with

a partner TF, this implicitly assumes that binding site affinities of the target TF are, on average, the same between

cooperatively and non-cooperatively bound regions. However, in F Fig, we see that the motif scores of target TF peaks

are typically lower in regions where the target TF is cooperatively bound. Thus, it appears that target TF binding

affinities are intrinsically lower in cooperatively bound regions than in non-cooperatively bound regions. Though in G

Fig, we see that the target TF motif scores and target TF peak intensities are not always correlated (in terms of their

Pearson correlation coefficient), this means that this is not the sole reason as to why peak intensities of the target TF

are low in cooperatively bound regions.

The low value of MI reflects the statistical independence between the peak intensities of TFs that cooperatively bind

DNA. The consequence of this is that the probability of finding a target TF to be weakly bound is independent of the

peak intensity of the partner TF, and that this is true whether or not the two are cooperatively bound. Put differently,

if we were asked to guess if the target TFs peak intensity at a particular location was low or high, then, the accuracy of

our guess will remain the same even if we were told the peak intensity of the partner TF. Thus, the mutual information

refers to the probability of finding a target TF to be weakly bound based on knowledge of the partner TFs peak intensity,

and does not refer to the actual peak intensity of the target TF.
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Figure A: (A) The read count in ChIP-seq input from cooperatively bound regions is significantly lower than in non-
cooperatively bound regions. Each panel contains a pair of boxplots of the number of reads falling within cooperatively bound (C, in
orange) and non-cooperatively bound (NC, in black) peak region of the target TF from the ChIP-seq input of wild-type (wt) cells and cells
where the indicated partner TF is knocked out (∆). The whiskers represent the 5th and 95th percentiles of the distribution. **** and ***
indicate p-values of less than 10−4 and 10−3, respectively, from a Wilcoxon rank-sum test. (B) However, this difference in input read
count distributions does not affect the intensity distribution of cooperatively bound peaks. In each panel, the white boxplot is
the intensity distribution of those cooperatively bound target TF peaks whose input read counts fall within the 5th and 95th percentile of the
input read count distribution of non-cooperatively bound target TF peaks. The orange boxplot is the intensity distribution of all cooperatively
bound peaks, which is identical to the boxplots of the target TF shown in orange in Figure in the main text. The p-values in each panel are
calculated from a Wilcoxon rank sum test between the white and orange distributions in each panel.
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Figure B: (A) The average mappability of cooperatively bound regions differs from those of non-cooperatively bound
regions in some data sets. Each panel contains a pair of histograms of the average mappability of cooperatively bound (orange) and
non-cooperatively bound (black) peaks of the target TF. The p-values between the two histograms in each plot are from a Wilcoxon rank-sum
test. Aside from the FOXA1-CEBPA and HNF4A-CEBPA datasets, the average mappability between cooperatively and non-cooperatively
bound target TF peaks are not significantly different. See C Section for the calculation of average mappability. (B) Differences in average
mappability do not affect the intensity distribution of cooperatively bound peaks. In each panel, the white boxplot is the intensity
distribution of those cooperatively bound target TF peaks whose average mappability falls within the 5th and 95th percentile of the average
mappability distribution of non-cooperatively bound target TF peaks. The orange boxplot is the intensity distribution of all cooperatively
bound peaks, which is identical to the boxplots of the target TF shown in orange in Figure 1 in the main text. The p-values in each panel are
calculated from a Wilcoxon rank sum test between the white and orange distributions in each panel.
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(E and F Tables).
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Figure G: Motif scores and peak intensities of the target TF are significantly correlated only in M. musculus datasets Each
row represents a different dataset. Each panel is a scatter between the highest motif score in each peak region and the intensity of that
peak, with the R2 value representing the Pearson correlation coefficient between the motif scores and peak intensities of each dataset, with **
indicating a p-value of less than 0.01. The left column represents scatters of motif scores and peak intensities from all doubly bound regions
across the genome, while the middle and the right columns are scatters from cooperatively bound regions and non-cooperatively bound regions,
respectively. The R2 value is statistically significant across all M. musculus datasets (FOXA1,HNF4A and CEBPA), but is true only in subsets
of doubly bound locations in the remaining datasets.
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Figure I: After indirectly bound ChIP-seq peaks are removed, the peak intensities of the remaining cooperatively bound
target TFs are lower than the peak intensities of the remaining non-cooperatively bound target TFs. Box-plots of peak intensity
distributions of cooperatively (orange) and non-cooperatively (gray) bound TF pairs, with target TFs on the left and partner TFs on the
right. **** indicates a p-value of < 10−4 from a Wilcoxon rank sum test. The whiskers of the box plot are the 5− th and 95− th percentiles
of the distributions shown. In S. cerevisiae and E. coli datasets, cooperatively bound target peak intensities are not significantly lower than
those of non-cooperatively bound peaks. However, this is partly because a large number of peaks were filtered out as indirectly bound in these
datasets (E and F Tables).
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Figure J: After indirectly bound peaks are removed, motif scores and peak intensities of the target TF are not significantly
correlated Each row represents a different dataset. Each panel is a scatter between the highest motif score in each peak region and the
intensity of that peak, with the R2 value representing the Pearson correlation coefficient between the motif scores and peak intensities of each
dataset, with ** indicating a p-value of less than 0.01. The left column represents scatters of motif scores and peak intensities from all doubly
bound regions across the genome, while the middle and the right columns are scatters from cooperatively bound regions and non-cooperatively
bound regions, respectively.
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Figure K: An analysis of the dependence between the number of peaks called and the number of sequence reads in ChIP
and input samples. For each ChIP-seq dataset, we sub-sampled between 20% and 80% of the aligned reads in ChIP and input samples
(shown on the x-axis), and called peaks on each sub-sampled set (see F Section for more details) . This sub-sampling was done in three
replicates for each fraction, and the error bars shown represent the standard deviation of the number of peaks at each sub-sampling fraction.
The orange and blue lines represent individual replicate ChIP and input libraries, and the black lines represent peak calls from combining
both replicates. There is only a single line for the FOXA1 (∆HNF4A), FOXA1 (∆CEBPA) and HNF4A (∆CEBPA) datasets, since only a
single replicate of sequencing was performed in the original experiments.
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Figure L: The CPI-EM variant that fits Log-normal distributions to peak intensity pairs consistently performs well across
all datasets The area under the ROC curve (auROC) of the CPI-EM algorithm applied to each of the datasets shown in Figure 1 in the
main text. CPI-EM variants that fit Lognormal, Gamma and Gaussian distributions are represented in orange, black and gray, respectively.
The auROC of the peak distance based detector is shown in blue, while the auROC of the chance detector is shown by a dashed line. See I
Section for the calculation of the ROC curve for both the CPI-EM and peak distance algorithms. The complete ROC curves for these datasets
are shown in Figure P
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Figure M: There is only a minimal effect of removing indirectly bound peaks on the performance of both the Log-normal
CPI-EM variant and STAP (A) The auROCs of STAP and CPI-EM are in sky blue and orange respectively, while the striped bars
represent the auROCs after indirectly bound peaks are removed from the dataset. The datasets marked with an asterisk (*) are those where
STAP was numerically unstable i.e. it did not consistently converge to the same model parameters after multiple runs. (B,C) The complete
ROC curves of both STAP and CPI-EM for each of the datasets in (A). The ROC curves of CPI-EM and STAP are in orange and sky blue,
respectively. The dashed lines indicate that indirectly bound peaks have been removed from the data before they have been input to both
algorithms. The numbers in the legend indicate the ROC of each algorithm.
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Figure N: (A) The average precision of CPI-EM is higher than that of STAP, even after indirectly bound peaks are removed
The average precision of STAP and CPI-EM are in sky blue and orange respectively, while the bars with asterisks above them represent the
average precision after indirectly bound peaks are removed from the dataset. The datasets marked with an asterisk (*) are those where STAP
was numerically unstable i.e. it did not consistently converge to the same model parameters after multiple runs. Full precision-recall
curves of (B) CPI-EM and (C) STAP for datasets shown in (A) The precision-recall curves for CPI-EM (orange) and STAP (blue),
for datasets where indirectly bound peaks are retained (solid lines) and filtered out (dashed lines). See K Section for the computation of
average precision and the precision-recall curves.
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Figure O: Filtering peaks in FOXA1, HNF4A and CEBPA datasets by FDR instead of IDR does not alter trends in peak
intensities of cooperatively bound target TF peaks. (A) Peak intensities of cooperatively bound target TFs are still significantly lower
than those of non-cooperatively bound target TFs. **** represents p-values of less than 10−4 obtained from a Wilcoxon rank-sum test. (B)
The log-normal variant of CPI-EM outperforms STAP, in terms of the area under their ROC curves, on FOXA1-HNF4A, FOXA1-CEBPA
and HNF4A-CEBPA datasets, even after indirectly bound peaks are filtered out.
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Figure P: ROC curves of runs of the CPI-EM variants (log-normal in orange, Gamma in black, and Gaussian in gray) and peak distance
(sky blue) algorithms on datasets in Figure 4 of the main text.
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Figure Q: Effect of removing indirectly bound peaks and peak trimming on the performance of each variant of CPI-EM.
CPI-EM variants that fit Lognormal, Gamma and Gaussian distributions are represented in orange, black and gray, respectively. The auROC
of the peak distance based detector is shown in blue.(A) In most datasets, removing indirectly bound peaks has only a minimal impact on
the performance of CPI-EM. In the mid-exponential CRP-FIS dataset, however, the Log-normal CPI-EM variant performs worse than chance.
(B) The trimming of peaks to 50 base pairs on either side of the summit does not affect the performance of CPI-EM in M. musculus ChIP-seq
data. However, in the mid-exponential CRP-FIS dataset, the Log-normal CPI-EM variant performed worse than chance.
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