## S1 Differentiation rules

For approximating the tissue concentration rates of change we use the stand-alone fuzzy logic controller provided by MATLAB's Fuzzy Logic Toolbox (The MathWorks, Inc., Natick, MA), compiled as a shared C library with the following configuration:

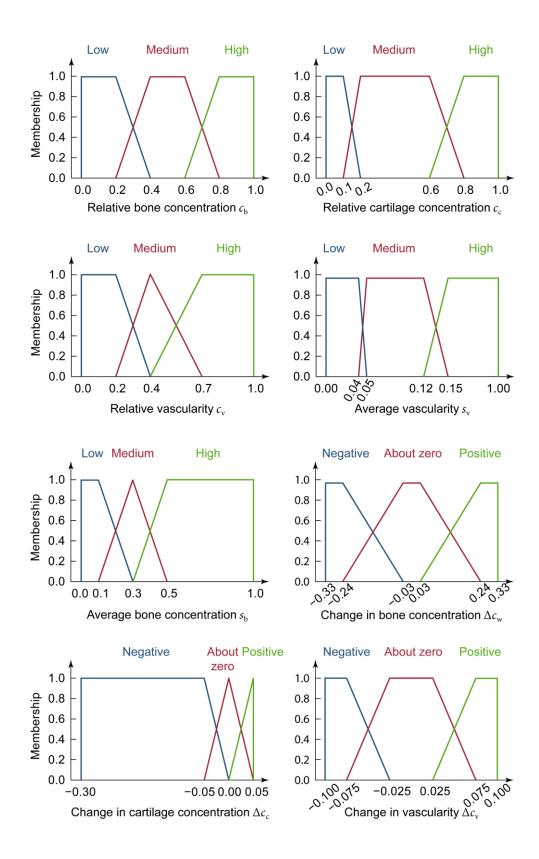
| Option               | Value                                                                                                                                                             |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input variables      | $c_{\rm w}, c_{\rm l}, c_{\rm c}, c_{\rm s}, c_{\rm v}, s_{\rm b}, s_{\rm v}, \gamma_{\rm peak}, \varepsilon_{\rm peak}, \gamma_{\rm eff}, \varepsilon_{\rm eff}$ |  |
| Output variables     | $\Delta c_{\rm w}, \Delta c_{\rm c}, \Delta c_{\rm v}$                                                                                                            |  |
| Logical AND operator | min                                                                                                                                                               |  |
| Logical OR operator  | max                                                                                                                                                               |  |
| Logical implication  | min (Mamdani implication)                                                                                                                                         |  |
| Logical aggregation  | max                                                                                                                                                               |  |
| Defuzzification      | Center of area                                                                                                                                                    |  |

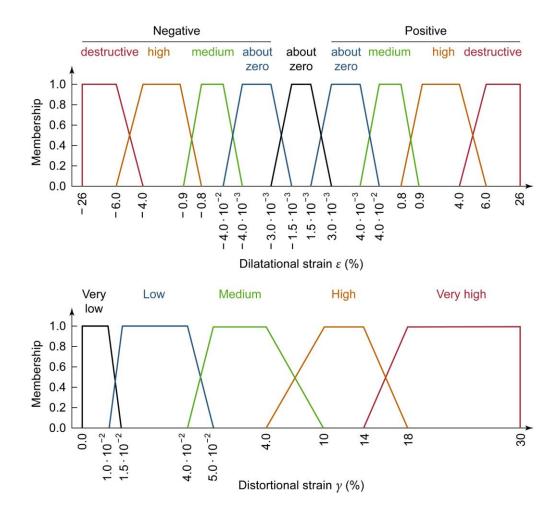
## Linguistic rules

The fuzzy logic controller evaluates the following 27 linguistic rules to determine the values of  $\Delta c_w$ ,  $\Delta c_c$  and  $\Delta c_v$ :

| Rule no. | lf                                                | then                                |
|----------|---------------------------------------------------|-------------------------------------|
| 1        | $\varepsilon_{ m peak}$ is negative destructive   | $\Delta c_{ m w}$ is negative and   |
|          |                                                   | $\Delta c_{ m c}$ is negative and   |
|          |                                                   | $\Delta c_{ m v}$ is negative       |
| 2        | $arepsilon_{	ext{peak}}$ is positive destructive  | $\Delta c_{ m w}$ is negative and   |
|          |                                                   | $\Delta c_{ m c}$ is negative and   |
|          |                                                   | $\Delta c_{ m v}$ is negative       |
| 3        | $\gamma_{ m peak}$ is very high                   | $\Delta c_{ m w}$ is negative and   |
|          |                                                   | $\Delta c_{ m c}$ is negative and   |
|          |                                                   | $\Delta c_{ m v}$ is negative       |
| 4        | $arepsilon_{ m peak}$ is not negative destructive | $\Delta c_{ m w}$ is about zero and |
|          |                                                   | $\Delta c_{ m c}$ is about zero and |
|          |                                                   | $\Delta c_{ m v}$ is about zero     |
| 5        | $arepsilon_{ m peak}$ is not positive destructive | $\Delta c_{ m w}$ is about zero and |
|          |                                                   | $\Delta c_{ m c}$ is about zero and |
|          |                                                   | $\Delta c_{ m v}$ is about zero     |
| 6        | $c_{\rm v}$ is low and                            | $\Delta c_{ m v}$ is positive       |
|          | $s_{ m v}$ is not low and                         |                                     |
|          | $arepsilon_{	ext{peak}}$ is not negative high and |                                     |
|          | $\gamma_{ m peak}$ is not high                    |                                     |
|          |                                                   |                                     |

| 7  | $c_{ m v}$ is medium and $s_{ m v}$ is not low and | $\Delta c_{\rm v}$ is positive |
|----|----------------------------------------------------|--------------------------------|
|    | $arepsilon_{	ext{peak}}$ is not negative high and  |                                |
|    | $\gamma_{ m peak}$ is not high                     |                                |
| 8  | $c_{ m v}$ is high and                             | $\Delta c_{ m v}$ is positive  |
|    | $arepsilon_{ m peak}$ is not negative high and     |                                |
|    | $\gamma_{ m peak}$ is not high                     |                                |
| 9  | $c_{\rm c}$ is low and                             | $\Delta c_{ m w}$ is positive  |
|    | $c_{ m v}$ is high and                             |                                |
|    | $s_{ m v}$ is high and                             |                                |
|    | $arepsilon_{ m eff}$ is negative medium            |                                |
|    | $\gamma_{ m eff}$ is medium                        |                                |
| 10 | $c_{\rm c}$ is low and                             | $\Delta c_{ m w}$ is positive  |
|    | $c_{ m v}$ is high and                             |                                |
|    | $s_{\rm v}$ is high and                            |                                |
|    | $\varepsilon_{ m eff}$ is positive medium          |                                |
|    | $\gamma_{\rm eff}$ is medium                       |                                |
| 11 | $c_{\rm b}$ is not high and                        | $\Delta c_{\rm c}$ is positive |
|    | $c_{\rm c}$ is low and                             |                                |
|    | $\varepsilon_{ m peak}$ is negative high and       |                                |
| 10 | $\gamma_{\text{peak}}$ is not very high            |                                |
| 12 | $c_{\rm b}$ is not high and                        | $\Delta c_{\rm c}$ is positive |
|    | $c_{\rm c}$ is low and                             |                                |
|    | $\varepsilon_{\rm peak}$ is negative medium and    |                                |
| 42 | $\gamma_{\text{peak}}$ is not very high            |                                |
| 13 | $c_{\rm c}$ is not low and                         | $\Delta c_{\rm c}$ is positive |
|    | $\varepsilon_{ m peak}$ is negative high and       |                                |
|    | $\gamma_{\text{peak}}$ is not very high            |                                |
| 14 | $c_{\rm c}$ is not low and                         | $\Delta c_{\rm c}$ is positive |
|    | $\varepsilon_{ m peak}$ is negative medium and     |                                |
|    | $\gamma_{\text{peak}}$ is not very high            |                                |
| 15 | $c_{\rm c}$ is not low and                         | $\Delta c_{ m w}$ is positive  |
|    | $c_{\rm v}$ is not low and                         |                                |
|    | $s_{\rm b}$ is not low and                         |                                |
|    | $\varepsilon_{\rm eff}$ is negative medium and     |                                |
| 10 | $\gamma_{\rm eff}$ is low                          |                                |
| 16 | $c_{\rm c}$ is not low and                         | $\Delta c_{ m c}$ is negative  |
|    | $c_{\rm v}$ is not low and                         |                                |
|    | $s_{\rm b}$ is not low and                         |                                |


|     | $arepsilon_{ m peak}$ is negative medium and    |                                |
|-----|-------------------------------------------------|--------------------------------|
|     | $\gamma_{\rm peak}$ is low                      |                                |
| 17  | $c_{\rm c}$ is not low and                      | $\Delta c_{ m w}$ is positive  |
|     | $c_{ m v}$ is not low and                       |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $arepsilon_{ m eff}$ is negative high and       |                                |
|     | $\gamma_{eff}$ is low                           |                                |
| 18  | $c_{\rm c}$ is not low and                      | $\Delta c_{\rm c}$ is negative |
|     | $c_{\rm v}$ is not low and                      |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $arepsilon_{ m peak}$ is negative high and      |                                |
|     | $\gamma_{ m peak}$ is low                       |                                |
| 19  | $c_{\rm c}$ is not low and                      | $\Delta c_{ m w}$ is positive  |
|     | $c_{ m v}$ is not low and                       |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $arepsilon_{ m eff}$ is negative high and       |                                |
|     | $\gamma_{eff}$ is medium                        |                                |
| 20  | $c_{\rm c}$ is not low and                      | $\Delta c_{\rm c}$ is negative |
|     | $c_{ m v}$ is not low and                       |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $arepsilon_{ m peak}$ is negative high and      |                                |
|     | $\gamma_{ m peak}$ is medium                    |                                |
| 21  | $c_{\rm c}$ is not low and                      | $\Delta c_{ m w}$ is positive  |
|     | $c_{ m v}$ is not low and                       |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $\varepsilon_{ m eff}$ is negative medium and   |                                |
|     | $\gamma_{\rm eff}$ is medium                    |                                |
| 22  | $c_{\rm c}$ is not low and                      | $\Delta c_{\rm c}$ is negative |
|     | $c_{\rm v}$ is not low and                      |                                |
|     | $s_{\rm b}$ is not low and                      |                                |
|     | $arepsilon_{	ext{peak}}$ is negative medium and |                                |
|     | $\gamma_{ m peak}$ is medium                    |                                |
| 23  | $c_{\rm c}$ is low and                          | $\Delta c_{ m w}$ is positive  |
|     | $c_{\rm v}$ is not low and                      |                                |
|     | $c_{\rm b}$ is high and                         |                                |
|     | $s_{\rm b}$ is high and                         |                                |
|     | $arepsilon_{ m eff}$ is negative medium and     |                                |
| • • | $\gamma_{\rm eff}$ is medium                    |                                |
| 24  | $c_{\rm c}$ is low and                          | $\Delta c_{\rm c}$ is negative |


|    | $c_{\rm v}$ is not low and<br>$c_{\rm b}$ is high and<br>$s_{\rm b}$ is high and<br>$arepsilon_{ m peak}$ is negative medium and<br>$\gamma_{ m peak}$ is medium                            |                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 25 | $c_{\rm c}$ is low and<br>$c_{\rm v}$ is not low and<br>$c_{\rm b}$ is high and<br>$s_{\rm b}$ is high and<br>$\varepsilon_{\rm eff}$ is negative medium and<br>$\gamma_{\rm eff}$ is low   | $\Delta c_{ m w}$ is positive  |
| 26 | $c_{\rm c}$ is low and<br>$c_{\rm v}$ is not low and<br>$c_{\rm b}$ is high and<br>$s_{\rm b}$ is high and<br>$\varepsilon_{\rm peak}$ is negative medium and<br>$\gamma_{\rm peak}$ is low | $\Delta c_{\rm c}$ is negative |
| 27 | $arepsilon_{ m eff}$ is about zero and $\gamma_{ m eff}$ is very low                                                                                                                        | $\Delta c_{ m w}$ is negative  |

Note that Rule 27 (bone resorption due to understimulation) is evaluated separately from the other rules as a post-processing step in order to determine resorption rates for both woven and lamellar bone (for implementation details, please refer to the main text as well as <u>Frank Niemeyer's PhD thesis</u> [pages 329 and 330; DOI: 10.18725/OPARU-2961]).

## **Membership functions**

The fuzzy sets the linguistic rules refer to are defined as the following trapezoidal membership functions:



