
S3 Appendix: Homogeneity testing of within-stratum diversity components 

 

If we scale our distance matrix D by its maximum entry (𝑑𝑚𝑎𝑥
2 ), then average the 

elements, both for the total collection and for any relevant subdivisions (e.g., within single 

species, within single populations, or even within single individuals), we can translate each of 

the resulting Q-values into a corresponding sum of squares.  For the grand total collection of 

(2N) alleles in the study, for the (2NSg) alleles within the gth species (g = 1, ... , G), or for the 

(2NPk) alleles within the kth population (k = 1, ... , K), the corresponding Q - values are simple 

multiples of the corresponding sums of squares and variances: 

                        Q = ( 𝐃𝑠𝑢𝑚 4𝑁2⁄ ) = (SS / N) = V  (2N  1) / N  , [S3.1a] 

where SS and V are the grand total sum of squares and total variance, respectively. Similar 

extractions for the within-species, within-population, and within-individual Q-values yield 

                               QWSg =     = (SSWSg / NSg) = VWSg  (2NSg – 1) / NSg  ,  [S3.1b] 

                                QWPk =     = (SSWPk / NPk) = VWPk  (2NPk – 1) / NPk  ,  [S3.1c] 

                                  QWIj =      = (SSWI-j  / NIj) = VWIj  (2NIj – 1) / NIj  .  [S3.1d] 

Averages of the within-stratum components of [S3.1b - S3.1d] can be computed as needed. 

We convert Q-values to their diversity analogues, and then use their maxima to scale 

each of those components from (0 = no diversity) to (1 = maximum diversity possible).  Given 

the sampling realities of the study, those maxima take very simple forms,        

                    𝑄∗ = (2N – 1) / 2N                   𝑄WS𝑔
∗  = (2NSg – 1) / 2NSg   ,  

 [S3.2] 

𝑄WP𝑘
∗  = (2NPk  – 1) / 2NPk           𝑄WI−𝑗

∗  = (2NIj – 1) / 2NIj = ( ½ )  , 

recalling (for diploids) that (𝑁I𝑗 = 2) alleles.   
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The net result of such translation is we translate all of our within-stratum diversity components 

into analogous within-stratum variance analogues,  

 γ~ = [ Q / Q* ] = 2  V               σWSg
~  = [ QWSg / 𝑄WS𝑔

∗ ] = 2  VWSg  , 

                                                 [S3.3] 

αWP𝑘
~  = [ QWPk  / 𝑄WP𝑘

∗  ] = 2  VWPk        ωWI−𝑗
~  = [ 𝑄WI−𝑗 / 𝑄WI−𝑗

∗  ] = 2  VWI-j  . 

     

Given a collection of G species, we will typically compute a weighted average value for (pooled) 

within-species (𝜎WS𝑔
~ ) diversity, where the sampling weights (fSg-values) for the G species are 

defined as in Text Eq. [5].  Straightforward algebraic manipulation yields 

σWS
~  = (𝑓SA QSA +     + 𝑓SG  QSG) / (𝑓SA  𝑄SA

∗  +     + 𝑓SG   𝑄SG
∗ )    =     

 [S3.4a] 

= 2  (SA  VSA +     + SG  VSG) = 2  VWS  , 

where the sample-frame-dependent () - weights take the form 

                    Sg =  NSg  (2NSg – 1)  / [ NSA  (2 NSA – 1) +  + NSG  (2NSG – 1) ] ,  [S3.4b]                         

 with the -weights summing to unity. Thus, (σWS
~  = 2VWS) is a weighted-average within-species  

scaled diversity component. Averaging of K within-population diversity components, using the 

sort of 𝑓P𝑘-weights in Text Eq. [10], yields (weighted average) within-population translation,  

        αWP
~  = (𝑓P1  QWP1 +  + 𝑓PK  QWPK) / (𝑓P1  𝑄WP1

∗  +  + 𝑓PK  𝑄WPK
∗ ) =   

 [S3.5a] 

= 2  (P1  VWP1 +   + PK  VWPK) = 2  VWP  , 

where the sample-frame imposed population weights (-values) now take the forms 

                   Pk =  NPk  (2NPk – 1)  / [ NP1  (2 NP1 – 1) +  + NPK  (2NPK – 1) ] ,  [S3.5b]   

with those (-weights) again summing to unity, and yielding (αWP
~  = 2VWP) as the weighted-

average within-population scaled diversity.   
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Multi-stratum averages are convenient summaries, but there are situations where those 

averages conceal more than they reveal.  We can test for heterogeneity of within-stratum 

diversity components with a non-parametric analogue of Bartlett’s test of homogeneous within-

stratum variances [1].  A test of homogeneous within-species diversity is tantamount to a test of 

homogeneous within-species variances, with a null hypothesis of the form:  

                              (σWSA
~ = ⋯ = σWSG

~ )        (VWSA =  = VWSG)  .  [S3.6a] 

The traditional Bartlett’s test takes the form:   

            Bartlett’s Test = [ (2NSA – 1)  ln (VWSA) +  + (2NSG  1)  ln (VWSG) ] 

 [S3.6b] 

 (2N – G)  ln (VWS)  ,      

 

which is typically compared with an asymptotic chi-square criterion [2]. The QDIVER routine 

(instead) permutes variance contributions of individual alleles (each measured from its own 

species mean) freely among species, computing a value of [S3.6b] for each randomization, and 

comparing the realized data outcome against the distribution of (say 999) permutational trials.  

To deploy [S3.6b], we start by extracting the diversity contribution of each allele to the 

within-species (diversity, in variance form).  Start with the DWSg-matrix, of dimension (2NSg x 

2NSg), and scale it both by the largest element (𝑑𝑚𝑎𝑥
2 ) and the maximum (𝑄WS𝑔

∗ )-value, yielding 

                                𝐃S𝑔
~  = 2NSg  DSg / (2 NSg  1)  (𝑑𝑚𝑎𝑥

2 ) ,  [S3.7a] 

designed to scale [ 0 ≤ σS𝑔
~  ≤ 1 ] .  We can extract the squared individual deviation of each allele 

for the (gth)-species mean, by using a Gower transformation [3] of the distance matrix in [S3.7a] 

to its corresponding covariance matrix form.  Conveniently, we only need the diagonal 

(variance) elements of that covariance matrix (Cg), so for the jth allele, we compute: 
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      vjj = (½)  [ jth row aver. of 𝐃S𝑔
~  + jth column aver. of 𝐃S𝑔

~  – global aver. of 𝐃S𝑔
~  ]  ,  [S3.7b] 

and the summation of (vjj), over all (2NSg) alleles within the gth species, is the variance within 

that species (VWSg). We perform a separate transform for each of the G species under 

consideration, and from each of them extract the (2NSg) single-allele contributions to the within-

species variation.  We permute all 2N allelic (vjj) values among species, in the numbers actually 

sampled, recompute the VWSg and the (pooled) VWS values for each of 999 trials, deploy the data 

as the 1,000th randomization, and evaluate Eq. [S3.6b] for each trial.  

We can test for homogeneous within-population diversities in exactly the same fashion. 

The null hypothesis is that the within-population diversities/variances are homogeneous 

                   (αWP1
~ = ⋯ = αWPK

~ )            (VWP1 = = VWPK)  . [S3.8a] 

To test this hypothesis, we again compute a Bartlett’s test, now defined as 

 

               Bartlett’s Test = [ (2NP1 – 1)  ln (VWP1) +  + (2NPK  1)  ln (VWPK) ] 

  [S3.8b] 

 (2N – K)  ln (VWP)  ,      

 

where deviations of individual alleles are now measured from their population means. Again 

converting a distance matrix to its covariance matrix analogue for each population separately, 

and scaling, we obtain 

                                                𝐃P𝑘
~  = 2NPk  DPk / (2 NPk  1)  (𝑑𝑚𝑎𝑥

2 )  .  [S3.9a] 

Thus, we scale [ 0 ≤ αP𝑘
~  ≤ 1 ], and then extract the squared individual deviation of each allele from 

its own population mean as 

        vjj = (½)  [ jth row aver. of 𝐃P𝑘
~  + jth column aver. of 𝐃P𝑘

~   – global aver. of 𝐃P𝑘 
~ ]  ,  [S3.9b] 

and permute those vjj-values freely among populations, computing individual within-population  
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variances, as well as the pooled within-population variance, using the observed values as the 

1,000th randomization, and evaluating the null distribution of [S3.8b] for significance. 

We treat scaled within-individual diversity in the same fashion, for situations where it 

would be useful to query whether within-individual diversity is homogeneous (or not) among 

individuals, by permuting vjj-values among individuals. The larger point is that Homo- vs 

Heterogeneous (within-stratum diversity) is tantamount to Homo- vs Heterogeneous (within-

stratum variance), so we have a convenient statistical comparison of homogeneous vs 

heterogeneous diversity hypotheses within different strata at any given level of the hierarchy. 
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