
S6 Appendix: Numerical Resolution

In this section, the key ideas of the numerical methodology used to resolve
the PBPK model are presented. As the program as been written using a object
oriented programming (OOP) approach, the notions used in OOP are introduced
in this section, followed by the main architecture of the program and then the
numerical implementation for each compartment. Matlab R� R2015b [1] was
used to write the code used for the simulation. The code files are attached for
more details.

S6.1 Introduction to Object-Oriented Programming
Following the theoretical presentation of the liver model, it is necessary to offer
an approach to solve/simulate the PBPK model considering all compartments.
In fact, the main challenge with PBPK models is to design a methodology which
facilitates their resolution including all compartments (that may have different
levels of description) and that anticipates future needs of more advanced model
for a particular compartment (e.g.: mechanistic and physiological description
of the kidneys or the blood-brain barrier). This would need to be done without
having to re-write all the code to incorporate those changes. Those constrains
are common in different area in engineering, physics, systems biology or even
quantitative finance and the common approach to resolve such problems is to use
object-oriented programming. Many programming languages permit to use an
OOP approach, as Python, C++, Java or Matlab R�. All these languages have
their advantages and disadvantages, but the ability to develop a code easily and
quickly without having the need to install mathematical libraries was preferred
over a fast programming language, therefore Matlab R� was preferred.

OOP is a programming approach based on the concept of objects and how
they interact with each others, which is different than the classical procedu-
ral approach of programming that focuses on functions (see figure S6.1). The
objects are organized into classes that define the common properties, or at-
tributes (e.g.: engine type, maximum engine power and amount of fuel for a
vehicle), and common methods. This describe actions/behaviors of the object
that can depend or affect its properties (e.g.: A running engine decreases the
fuel amount). The properties and the methods are encapsulated into different
classes, preventing the final users from misusing the properties and giving the
appropriate tools (i.e.: the methods) to interact with the different objects (see
figure S6.2). Moreover, a class B can inherit the properties and methods from
a class A, which allows the creation of “abstract” classes without re-describing
the common properties and methods for the “daughter” classes (see figure S6.3).
Beside, polymorphism is also another key feature of OOP, which allows differ-
ent classes to have the same method (i.e.: name), but different implementations
(see figure S6.4). Both inheritance and polymorphism are the key features,
facilitating future development of more complex models. This is achieved by
creating abstract classes with essential properties and methods, necessary to
resolve PBPK models. In the next section, the classes created to resolve the

1



Figure S6.1: Procedural vs. Object-Oriented programming. Procedural
programming focuses on functions where the action are described. Object-
oriented programming focuses on the object which are defined by their properties
and their behaviors.

Figure S6.2: Encapsulation of the properties and methods of an object.
While using a class, the user just to know the implementation of the methods.
For example, to drive a car, one does not need to understand the mechanism of
the engine but only the car controls.

2



Figure S6.3: Class inheritance. A car, a bike or a boat are all vehicles than
can move, turn, but with different type of way to move and number of wheel.

PBPK and the liver models are introduced.

S6.2 ODE, PBPK Compartment and PBPK system
Ordinary differential equations (ODEs) can be simply solved in Matlab R� by
using one of the available solver, namely ode15s or ode45. In order to use
these solvers, one needs to define a function f (t,Y ), describing the dynamic of
the system of interest such that Y represents the variables of a system and is
solution of:

dY

dt
= f (t,Y ) (S6.1)

where Y and f are both column vectors of the size of the system of interest.
The main idea of solving a PBPK system using an OOP approach is to

create an abstract class OdeSystem with an abstract methods that returns a
function f . The method will be inherited by all “daughter” classes with a
different expression due to the polymorphism capability. The basic properties
and methods of the class are represented in figure S6.5. From this abstract class,
two main “daughter” classes are defined; PbpkCpt and PbpkSystem (see figure
S6.6 and S6.7). The inheritance diagram of the different classes and an example
of an PbpkSystem object are represented in figures S6.8 and S6.9, respectively.

As these two classes are defined, the creation of sub-classes representing
compartments with one node (e.g.: PbpkCpt_One in figure S6.8) or more complex
compartment as the gut or the liver model is facilitated. In each “daughter”
class, the parameters of the compartment are defined as properties of the class.
Therefore after defining them, there is no more need to manipulate them.

3



Figure S6.4: Polymorphism. Polymorphism is feature of OOP, which allows
different classes to have the same method (i.e.: name), but different implemen-
tations. For example, all car have a pedal to make the car moving, but the
engine could be different.

Figure S6.5: Description of the class OdeSystem.

4



Figure S6.6: Description of the class PbpkCpt. PbpkCpt describes the main
properties and methods of a PBPK compartment.

5



Figure S6.7: Description of the class PbpkSystem. PbpkSystem defines a
PBPK system composed of objects of class PbpkCpt and has a matrix Q describ-
ing the flow between the different compartments. The function f and the vari-
able Y of a PBPK system are simply the concatenation of the functions fk and
the variables Yk of the nCpt compartment such as f tr

=

⇣
f tr
1 ,f tr

2 , . . . ,f tr
nCpt

⌘

and Y tr
=

⇣
Y tr

1 ,Y tr
2 , . . . ,Y tr

nCpt

⌘
.

6



Figure S6.8: Inheritance diagram of the different classes. A “daughter”
class inherits all properties and methods of its “mother” class. Therefore, there
is no need to re-define them when creating the “daughter” class. Nevertheless,
if a method needs to be implemented differently, it could be re-defined due to
the polymorphism capability as for the function f in this case.

7



Figure S6.9: Example of a PbpkSystem object composed of 4 PbpkCpt
objects.

8



S6.3 Simple Compartment
A simple compartment is a compartment that is homogeneous in space, therefore
only one variable is necessary per compound. The classes PbpkCpt_One_Elimination
and PbpkCpt_One are examples of simple compartment. For instance, when the
elimination rate kel is accounting for, the function fsc is written as:

fsc (t,Y ) = (S � Ysc./Kp) /⌧ � kel.Ysc (S6.2)

where Ysc represents the concentration of the compounds, Kp the partition
coefficients of the compounds, ⌧ = V/Q the characteristic time for the arterial
blood to reach the compartment (V and Q are the volume and flow of the
compartment) and S the source concentration of the compounds at the entrance
of the compartment. The notations presented in the paper, which are similar
to Matlab R� script, are used.

The arterial blood, venous blood, kidney, lung and RB compartments are
simple compartment with only the kidney compartment having an elimination
rate constant.

S6.4 Gut Compartment
The gut compartment is composed of two sub-compartments; portal vein and
gut wall. The variables of the system are Cpv, Cg and ETot,g, which are the
compound concentrations in the portal vein and in the gut walls and the enzyme
levels in the gut wall, respectively. They are solutions of Eqs (15) and (16). The
variable YG and the function fG of the gut compartment are defined as:
8
><

>:

Y tr
G =

�
Ctr

pv,C
tr
g ,Etr

Tot,g

�

f tr
G (t,YG) =

�
f tr
pv (t,Cpv,Cg) ,f tr

g,C

�
t,Cg,ETot,g

�
,f tr

g,E

�
t,Cg,ETot,g

��

(S6.3)
where:

9



8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

fpv (t,Cpv,Cg) =
Qpv

Vpv
(SG �Cpv) +

Qg

Vpv
fg
u.Cg

fg,C

�
t,Cg,ETot,g

�
=

n
DoseX

i=1

Fa.Di.ka

Vg
. exp (�ka (t� Ti))H (t� Ti)

�
⇥�
kg
cat/K

g
m + kg

inact/K
g
I

�
Eg

⇤
.fg

u.Cg

�
V g
max

Kg
m,2 + fg

u.Ch
.fg

u.Cg � Qg

Vg
fg
u.Cg

fg,E

�
t,Cg,ETot,g

�
= kg

deg.

2

4
1 +

 
(FIg

max � 1)

ECg
50 +

�
fg
u.Cg

�
tr
nE

!tr
�
fg
u.Cg

�

�ETot,g.

0

BB@1 +

1

kg
deg

.
⇣

kg
inact

Kg
I

⌘tr �
fg
u.Cg

�

1 +

⇣
1

Kg
m,1

+

1
Kg

i
+

1
Kg

I

⌘tr �
fg
u.Cg

�

1

CCA

3

775

(S6.4)

with Eg

�
Cg,ETot,g

�
= E0,g.

ETot,g

1 +

⇣
1

Kg
m,1

+

1
Kg

i
+

1
Kg

I

⌘tr �
fg
u.Cg

� and SG the

source concentration of the compounds at the portal vein entrance which is
taken equal to arterial blood concentration CAB.

S6.5 Liver Compartment
Similarly to the gut compartment, the liver compartment is described by two
sub-compartments; the sinusoids (blood capillaries) and the hepatocytes. The
variables of the system are Cb for the compound concentrations in the sinusoid
sub-compartment and Ch and ETot for the compound concentrations and en-
zyme levels in the hepatocytes sub-compartment. Unlike the gut compartment,
space is taking into account, which requires an extra step to fully defines the
variable YL and the function fL of the liver compartment as the number of vari-
ables depends on the chosen spatial step. First, the variable YL will be defined
in order to simplify the notations, followed by the description of the function
fL.

One can set the spatial discretization; x1 = 0 < x2 < . . . , < xm�1 < xm =

Ln, where m is the number of spatial points and Ln is the length of all sinusoid
levels (i.e. =

Xn

k=1
Lk; see Fig 1). Therefore, Cb, Ch and ETot are estimated

in m points. To simplify the notation, one can define Cb and Ch as matrices
of size nC ⇥m and ETot as a matrix of size nE ⇥m where nC and nE are the
number of compounds and enzymes considered, such as:

10



8
>>>>>>>><

>>>>>>>>:

Cb = (Cb (t, x1) ,Cb (t, x2) , . . . ,Cb (t, xm)) = (Cb,1,Cb,2, . . . ,Cb,m)

Ch = (Ch (t, x1) ,Ch (t, x2) , . . . ,Ch (t, xm)) = (Ch,1,Ch,2, . . . ,Ch,m)

ETot =
�
ETot (t, x1) ,ETot (t, x2) , . . . ,ETot (t, xm)

�

=

�
ETot,1,ETot,2, . . . ,ETot,m

�

(S6.5)
These notations are useful for matrix operations. But YL is a column vector
and to relate those variables to YL, the matrices Cb, Ch and ETot need to be
converted into column vector. The vectorization is done in Matlab R� by the
operation Vec_M=M(:);, where M is a matrix. In this section, this operation is
noted

�!
M such as:

�!
M tr

=

�
M tr

1 ,M tr
2 , . . . ,M tr

m

�
(S6.6)

Therefore, the vectorization of Cb, Ch and ETot are:
8
>>>>>>><

>>>>>>>:

�!
Cb

tr
=

⇣
Ctr

b,1,C
tr
b,2, . . . ,C

tr
b,m

⌘

�!
Ch

tr
=

⇣
Ctr

h,1,C
tr
h,2, . . . ,C

tr
h,m

⌘

��!
ETot

tr
=

�
ETot,1,ETot,2, . . . ,ETot,m

�

(S6.7)

And finally YL is simply defined the concatenation of
�!
Cb,

�!
Ch and

��!
ETot, such

as:

Y tr
L =

⇣�!
Cb

tr,
�!
Ch

tr,
��!
ETot

tr
⌘

(S6.8)

Now that the spatial discretization and YL have been defined, the function
fL can be expressed. Similarly to YL, fL is the concatenation of three functions
fb (t,Cb,Ch), fh,C

�
t,Cb,Ch,ETot

�
and fh,E

�
t,Ch,ETot

�
that describes the

dynamic of Cb, Ch and ETot, respectively, such as:

f tr
L (t,YL) =

⇣
f tr
b (t,Cb,Ch) ,f tr

h,C

�
t,Cb,Ch,ETot

�
,f tr

h,E

�
t,Ch,ETot

�⌘

=

⇣�!
Fb

tr
(t,Cb,Ch) ,

��!
Fh,C

tr
�
t,Cb,Ch,ETot

�
,
��!
Fh,E

tr
�
t,Ch,ETot

�⌘

(S6.9)
where Fb, Fh,C and Fh,E are the matrix forms of fb, fh,C and fh,E , re-

spectively. Fb is expressed using Eq (1), which is a partial differential equation

11



(PDE). The simple scheme for a conservation equation is a backward Euler
scheme, which gives:

8
>>>>>>><

>>>>>>>:

Fb,1 = �↵BH (x1)
⇥
(P + ⇢in) .fb

u.Cb,1 � (P + ⇢out) .fh
u .Ch,1

⇤

� 1

⌧L
(SL �Cb,1)

Fb,k = �↵BH (xk)
⇥
(P + ⇢in) .fb

u.Cb,k � (P + ⇢out) .fh
u .Ch,k

⇤
8k 2 J2 : mK

� v (xk)
Cb,k �Cb,k�1

xk � xk�1

(S6.10)

where ⌧L is the characteristic time for the arterial blood to reach the entrance of
the lobule and is taken equal to x2�x1

v(x1)
. SL represents the source concentration

of the compounds at the entrance of the lobule. Fh,C and Fh,E are expressed
using Eqs (7) and (9), such as:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Fh,C,k = ↵HB (xk)
⇥
(P + ⇢in) .fb

u.Cb,k � (P + ⇢out) .fh
u .Ch,k

⇤
8k 2 J1 : mK

� [(kcat/Km,1 + kinact/KI)Ek] .fh
u .Ch,k

� Vmax

Km,2 + fh
u .Ch,k

.fh
u .Ch,k

Fh,E,k = kdeg.

2

641 +
 

(FImax � 1)

EC50 +

�
fh
u .Ch,k

�
tr
nE

!tr
�
fh
u .Ch,k

�
8k 2 J1 : mK

�ETot,k.

0

BB@1 +

1

kdeg
.
⇣

kinact
KI

⌘tr �
fh
u .Ch,k

�

1 +

⇣
1

Km,1
+

1
Ki

+

1
KI

⌘tr �
fh
u .Ch,k

�

1

CCA

3

775

(S6.11)

with Ek = E
�
Ch,k,ETot,k

�
= E0.

ETot,k

1 +

⇣
1

Km,1
+

1
Ki

+

1
KI

⌘tr �
fh
u .Ch,k

� .

S6.6 Source Concentration
The source concentration S = (Si,j) 1in

C

1jn

Cpt

, where Si,j is the source con-

centration of the drug i into the compartment j, for each compartment can be
expressed as a function of the output concentration of all compartment COutput

and the flow between the compartments, noted Q. COutput is a matrix such as
COutput = (COutput,i,j) 1in

C

1jn

Cpt

and COutput,i,j is the output concentration of

the drug i from the compartment j, corrected by the partition coefficient. Q is

12



a matrix such as Q = (Qi,j) 1in

Cpt

1jn

Cpt

and Qi,j is the flow from the compartment

i to the compartment j. Therefore, S is simply given by:

S =

COutputQ

QIn
(S6.12)

where QIn =

 
QIn,i =

n
CptX

k=1

Qk,i

!

1in
Cpt

represents the total flow into each

compartment.

S6.7 Resolution
Now that the compartments have been described, the variable Y and the func-
tion f of the herein PBPK model is simply given by:

8
><

>:

Y tr
=

�
Y tr

AB,Y tr
G,Y tr

L ,Y tr
K ,Y tr

RB ,Y tr
V B ,Y tr

Lungs

�

f tr
=

�
f tr
AB,f tr

G,f tr
L ,f tr

K ,f tr
RB,f tr

V B,f tr
Lungs

� (S6.13)

After defining the initial condition of the system Y0, the function f can simply
be used with any Matlab R� to compute Y and obtain the pharmacokinetics
and the enzyme levels of the different compounds. For the simulation presented
in this thesis the solver ode15s was preferred, as it can solve stiff problem and
adapt the time step for optimum resolution.

References

[1] Matlab, version 8.6 (R2015b), The MathWorks Inc., Natick, Massachusetts,
2015.

13


	Introduction to Object-Oriented Programming
	ODE, PBPK Compartment and PBPK system
	Simple Compartment
	Gut Compartment
	Liver Compartment
	Source Concentration
	Resolution
	References

